CSCI 361 Lecture 9: Pumping Lemma for CFGs

Shikha Singh

Announcements & Logistics

- No exercise for next Tuesday
- HW 4 was due yesterday: solutions will be posted on GLOW today
- Reminder: Midterm I in-class on Oct 7
 - Closed book but can ask clarification on definitions
 - Several textbooks will be available for referencing
 - Everything up to HW 4 included
- Plan for today:
 - Use some lecture time to go over Pumping Lemma for CFGs
 - Do problems on the practice midterm

Last Time

- Practice with push-down automata
- Equivalence of CFGs and non-deterministic push-down automata

- Proved using a similar "pumping lemma" as regular languages
- With respect to regular languages:
 - pumping lemma exploits the fact that if a string is long enough, a state is repeated in the DFA for the language (loop)
- With respect to CFLs:
 - pumping lemma exploits the fact that if a string is long enough, deriving it requires recursion (repeated use of a variable)
- Lemma based length of parse trees for derivations

Parse Trees and CFGs

• Consider the CFG for $A = \{w \# w^R \mid w \in \{a, b\}^*\}$:

$$S \rightarrow aSa \mid bSb \mid \#$$

• Consider a parse tree for w = aab#baa

Parse Trees and CFGs

- Variable S is repeated
- Can "pump up" or "pump down" to create strings in the language
 - Replace yellow with violet: aa#aa
 - Replace violet with yellow: aabb#bba

Pumping Lemma: CFLs

- Statement: If L is a CFL, then there exists a number p (the pumping length) such that for all $s \in L$ of length at least p, it is possible to divide s into five pieces s = uvxyz satisfying the conditions
 - |vy| > 0
 - $2. |vxy| \le p$
 - 3. For each $i \ge 0$, $uv^i x y^i z \in L$
- Note that vxy can appear anywhere in the string as long as they are no longer than p symbols long

Proving L cannot be Context-Free

• Statement: Consider a language L. If for any number p, there exists an $s \in L$ of length at least p such that it is **impossible** to divide s into five pieces s = uvxyz satisfying all three conditions below

$$2. |vxy| \le p$$

3. For each $i \ge 0$, $uv^i x y^i z \in L$

then L cannot be regular.

Pumping Lemma: Game View

- Defender claims L satisfies pumping lemma
- ullet Challenger claims L does not satisfy pumping lemma

Defender

Pick pumping length p

Divide z into u, v, w, x, ys.t. $|vwx| \le p$, and |vx| > 0

Challenger

$$\xrightarrow{p}$$

Pick $z \in L$ s.t. $|z| \ge p$

$$\overset{u,v,w,x,y}{\longrightarrow}$$

Pick i, s.t. $uv^iwx^iy \notin L$

Pumping Lemma: Game View

- If L is a CFL: defender has a winning strategy, challenger gets stuck
- If challenger has a winning strategy, $\it L$ cannot be a CFL

Defender

Pick pumping length p

Divide z into u, v, w, x, ys.t. $|vwx| \le p$, and |vx| > 0

Challenger

$$\xrightarrow{p}$$

Pick $z \in L$ s.t. $|z| \ge p$

$$\begin{array}{c}
u,v,w,x,y\\ \longrightarrow \\
\downarrow i
\end{array}$$

Pick i, s.t. $uv^iwx^iy \notin L$

Pumping Lemma (CFL): Intuition

- If the grammar generates a long enough string then the parse tree for that derivation must be "tall enough"
- Let |V| be the number of variables in the CFG and b be the max number of symbols in the RHS of any rule
 - Each node in a parse tree has at most b children
- If the parse tree has height h, what is the max num of leaves it can have?
 - b^h
- If a tree has at least $b^{|V|+1}$ leaves and each node has degree at most b, what can we say about the height?
 - At least |V| + 1

Pumping Lemma (CFL): Proof

- Consider a CFG G and let b be the maximum number of symbols on the RHS of G
- Let |V| be the number of variables
- Consider a $w \in L(G)$ of length at least $b^{|V|+1}$
- Consider the derivation of w in the smallest parse tree
 - Each node has at most b children
 - Num of leaves = $|w| \ge b^{|V|+1}$
- · What can we conclude about the height of the parse tree?
 - Longest path from root to leaf (height) is at least |V| + 1

- Number of variables in a path with |V| + 1 edges is |V| + 1
- · Some variable must be repeated in this derivation

• Consider the smallest-parse tree generating s and let R be the a variable that repeats among the lowest |V|+1 variables onthe longest root to leaf path in the parse tree

- Let the upper occurrence generate a substring of s of the form vxy
- Overall the string s must contain vxy and is of the form uvxyv

• Takeaway: Can replace the smaller subtree under the second occurrence of R with the larger one and still have a valid derivation

• Condition 3: Strings of the form uv^ixy^iz and uxy should all be valid strings in the language

• Condition I: Both v and y should not be ε . If they were both ε then then smaller parse tree generating uxz generates w but this violates our assumption that we started with the smallest parse tree.

• Condition 2: $|vxy| \le p$: R is chosen to be among the bottom |V| + 1 variables and is the longest path in the parse tree, then the subtree vxy is at most |V| + 1 high and thus $|vxy| \le 2^{|V|+1} = p$

Using the Pumping Lemma

- Problem. Apply the pumping lemma to prove that the language $\{a^nb^nc^n\mid n\geq 0\}$ is not context-free.
- Proof. Assume L is context-free with pumping length p.
- Select $w = a^p b^p c^p \in L$ and has length $3p \ge p$
- Consider all possible ways to partition w into uvxyz s.t. condition (2) and (3) hold: |vy| > 0 and $|vxy| \le p$
 - Notice that vxy cannot be made up of all three letters (why?)

Using the Pumping Lemma

- Problem. Apply the pumping lemma to prove that the language $\{a^nb^nc^n\mid n\geq 0\}$ is not context-free.
- Proof. Assume L is context-free with pumping length p.
- Select $w = a^p b^p c^p \in L$ and has length $3p \ge p$
- Consider all possible ways to partition w into uvxyz s.t. condition (2) and (3) hold: |vy| > 0 and $|vxy| \le p$
 - Case I. At least one of v or y contains two distinct symbols. Then xv^2xy^2z contains symbols out of order and $\not\in L$
 - Case 2. Both v and y contain the same symbol (both are a's or both b's or both c's then $uxz \notin B$

Pumping Lemma Questions

- Question. What does it mean for a L to satisfy the pumping lemma?
- Question. What does it mean to show that L does not satisfy PL?
- Question. If a language satisfies PL for CFLs, does it mean it is context-free?
- Question. If a language is context-free, does it have to satisfy PL?

Why context-free?

- Question. What is the meaning of being "context-free"?
- In CFGs, left-hand side of rules can only contain a single variable say T (no context around when to replace T in a derivation)
- "Context-sensitive" grammars are more general
- A context-sensitive grammar for $\{a^nb^nc^n | n > 0\}$:

$$S \rightarrow abc \mid aBSc$$
 $Ba \rightarrow aB$
 $Bb \rightarrow bb$

 $S \rightarrow aBSc \rightarrow aBaBScc \rightarrow aaBScc \rightarrow aabbcc$ $S \rightarrow aBSc \rightarrow aBaBScc \rightarrow aaBScc \rightarrow aaBabccc \rightarrow aaabbbccc$