CSCI| 361 Lecture 8:
Push-down Automata

Shikha Singh

Announcements & Logistics
Hand in Exercise # 7, no exercise for next class 2,\
HW 4 out, due tomorrow
Short homework to allow time for midterm prep
Practice midterm will be released soon
Thursday lecture we will spend some time on review/practice questions
Reminder: Midterm | in-class on Oct /

Closed book but can ask clarification on definitions

Several textbooks will be avallable for referencing

Everything up to HWV 4 included
Today's office hours slightly shifted 2.30-3.55 pm

L ast [Ime

Introduced CFGs as the next model of computation
Recursion provide more power and state

Practiced CFGs

Any regular language has a regular CFG that generates it and a regular
CFG can be recognized by a DFA

CFGs are closed under union, concatenation and Kleene star

Closure Properties of CFLs

« CFLs are closed under

- Union
- Concatenation
« Kleene star

+ Important. Not closer under complement and intersection!

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

Concatenation: L(G;)L(G,) is generated by
RiU Ry U {S — 3152}

Kleene x: L(G1)* is generated by
Rl U {S — 6‘3 — Sls}

Automata for CFGs

- Regular Languages : Finite Automata

- Context-free languages: !

Pushdown Automata

Basically an NFA with a stack (pushdown store)

- The stack can consist of unlimited number symbols but can only be

read and altered at the top:

- Can only pop symbol from top or push symbol to top

Input la|b|b | a|bl|a

reading head ____________,

(L to R only,
one symbol at a F.C. /

time, or stays put)

Stack

pushdown store head
can push (add symbols)
or pop (remove and

S S OIS

check symbols)

Pushdown Automata lransitions

» Transitions of a PDA have two parts:
- State transition and stack manipulation (push/pop)

» If in state p reading input symbol a and b on the stack, replace b

with ¢ on the stack and enter state g

* (p,a,b) = (q,c¢)
« 0:0OX2Z XI', > LPOXT),)

» In state diagram arrow goes from p — g with label a, b — ¢

Pushdown Automata lransitions

- If in state p reading input symbol a and b on the stack, replace b with

¢ on the stack and enter state g, that is, (p,a,b) — (q,c)

» In state diagram arrow goes from p — g with label a, b — ¢

* (Non-determinism) &€, b — ¢ means without reading any input

symbol, one branch jumps from p to g, popping b and pushing ¢

* (Push only) a, & = ¢ means read a from the input, move from state p

to g without popping anything from stack and pushing ¢ on it

* (Pop only) a,b — & means read read a from the input, move from

state p to g popping b off the stack, without pushing anything

Formal Definition: PDA

» A pushdown automaton is a six tuple M = (Q, 2,1, 9, gof') where
+ (O Is the finite set of states

-+ 2 Is a finite alphabet (the input symbols)

- 1" is a finite tape alphabet (the stack symbols)

+ 0:0X2Z XI', = PO XT),) is the transition function

* o € Q isthe initial state and F C Q is the set of accept states

Example PDA

- Consider the language over X = {[,]} of all strings made up of

correctly nested brackets
- CFG for this language: S — € | [S] | S

- Now lets create a push-down automata for this language

- What to store on the stack?

Exam

ble PDA for Balancec

Recall: A transition of the form a, b = z
means "If the current input symbol Is a and
the current stack symbol is b, then follow this
transition, pop b, and push the string z”

Brackets

PDA Acce

btance: Informal

- A PDA accepts an input string w If there Is a computation that:

- starts In the start state and empty stack

* has a sequence of valid transitions

- at least one computation
empty stack

branch ends in an accept state with an

- A PDA computation branch "dies off" if

* no transition matches the input (as in an NFA), or if

* no rule matches the stack states

- Language of a PDA: set of all strings that are accepted by it

PDA More Examples

. L=1{0"1"|n>0)

0,€—0
g,—$
O

1,0—-€

1,0—€
e, $—¢€ 13

PDA More Examples

- PDAfor L= {a'b/ck|i=jori=k)

Guess which case

occurs: #a = #b
or #b = #c

PDA More Examples

- PDAfor L= {a'b/ck|i=jori=k)

PDA More Examples

- PDAfor L= {a'b/ck|i=jori=k)

CrFGs Not Closed under Intersection
+ Consider L; = {a'b/c* | i,j,k > 0and i =} and

L, = {a'b/c*|i,jk>0andi=k)}

- Both are context-free languages

+ However, their intersection L; N L, = {a'b'c'|i > 0} is not a CFL
- We will prove this by pumping lemma soon

* Inturtion: Only one stack: can erther match a's and b's or a's

and c's but not both (once something Is popped, gone forever)

Practice Problems

+ Draw a PDA for the following languages:

L= {abc*|ijk>0andi+k=j}
- (Can you also give a CFG generating such strings?

- L={wwl | we{0,1}*)

~rew | hings to Note

- PDAs can be a Iittle tricky to draw
- Need to worry about non-determinism + stack at the same time

» Don't confuse the € which is a NFA "guess” from the € in stack
transition which indicates push only/pop only

- Remember that whenever erther the input symbol or top of stack
doesn't match an avallable rule, that branch dies off

+ Sometimes you may want to push more than one symbol at once

- Abuse notation to write a,$ — $b (pop $ then push $ back
followed by push b

Fquivalence: CFG <= PDA

Theorem. A language Is context-free if and only it Is
recognized by some (non-deterministic) pushdown automaton.

Won't prove this formally but will
discuss high-level inturtion
towards the end of lecture

Note: Unlike DFA and NFA, non-deterministic PDAs are more
powerful than deterministic PDAs.

Inturition: CFG = PDA

» ConsideraCFG G = (V,2,R,S)

- Construct a PDA with three main states: start, loop and accept
state (some extra states for bookkeeping)

- Start by putting § on the stack

» Each time top of stack is a variable A, guess a rule of the type
A — u replace A with RHS of the rule

» Each time top of stack is a terminal match it to the current input
symbol (computation dies off it they don't match)

» I you reach bottom of stack at any point in a branch, accept

- All variables have been replaced and non-terminals matched

Example: CFG => PDA

S — alb|b
T —Tale

Inturtion: PDA = CFG

- Wlog assume the PDA has one accept state, empties stack before
accepting and each move Is a push or pop (but not both)

+ Let O be the states of the PDA

+ Create variables for each pair of states: {A,,/ | p,g € O}

+ A, generates all strings that take the PDA from p to g starting from
an empty stack and ending at an empty stack

» Such strings can also take PDA from p to g from a non-empty
stack returning to exactly the same stack contents

- Start variable Is Aq(), g where ¢ Is start state and gy is accept state

Inturtion: PDA = CFG

- Consider the computation of the PDA on the input string that takes

it from a state p (and empty stack)

- Iwo possibllities:

to a state g (and empty stack)

- Stack 1s only empty at the beginning and end: first symbol pushed

first Is the last symbol to be pop

» Stack is empty in the middle of

bed

ne computation (the first symbol

pushed Is popped off at some point)

CFG Rule for Possibility |

- Stack 1s only empty at the beginning and end: first symbol pushed
first Is the last symbol to be popped

+ Thatis, (p,a,e) = (r,u) and (b, s,u) — (g, €) where PDA goes
from p to g after pushing a and s to r after popping b

- Then,add the rule A, — aA,b

T

Stack
height

generated

by Apq

Input string D
>

generated
by Aps

CFG Rule for Possibility 2

- Stack is empty In the middle of the computation (the first symbol
pushed Is popped off at some point)

- Add therule A,, — A, A, for every triple p,q,r € O

T

Stack
height generated
by Apg
Input string
> D q
N —
generated generated

by A, by A,

Base Case

+ Finally, for each p € Q,add therule A,, — ¢

All At Once

- Given PDA P = (Q, 2,1, 0, gy, {gaccept }), construct CFG with

variables {A, | p,g € O} and start variable A%‘lacceptand rules:

1. For each p,q,7,s € Q, v € T, and a,b € X, if §(p,a,e) contains (r, u)
and J(s, b, u) contains (q, €), put the rule A,;, - aA,sbin G.

2. For each p,q,r € Q, put the rule A,;, - A, A4 in G.
3. Finally, for each p € @, put the rule A,, -+ ein G.

Inturtion: Why 1t Works?

» The proof of correctness relies on the following claim:

+ A, generates x if and only if string x can bring P from p with

empty stack to g with empty stack

- Both directions are induction:

» (=) Induction on the derivation length

» (<) Induction on the computation length

Non-Context-Free Languages

» Proved using a similar "pumping lemma" as regular languages
- With respect to regular languages:

- pumping lemma exploits the fact that it a string Is long enough,
a state Is repeated In the DFA for the language (loop)

+ With respect to CFLs:

+ pumping lemma exploits the fact that if a string is long enough,
deriving it requires recursion (repeated use of a variable)

- Lemma based length of parse trees for derivations

- Consider a parse tree for w = aab#baa

Parse Trees and CFGs

+ Consider the CFG for A = {w#w”® | w € {a,b}*}:

S —>aSa | bSh | #

Ay

N\

]#—U)—OD—UJ—UJ

c-l

"/

o

a)

Parse Trees and CFGs

S
- Variable S is repeated / | \
a S a
+ Can "pump up" or "pump down" to create / | \
strings in the language a S
|
-+ Replace yellow with violet: aa#aa b / g N\ b
 Replace violet with yellow: aabb#bba :L

/|\ /‘\
I /l\

a S a

| /I\

b |S| b

#

Pumping Lemma: CFLs

- Statement: If L s a CFL, then there is a number p (the pumping
length) where for any s € L of length at least p, it Is possible to
divide s Into five pieces s = uvxyz satistying the conditions

. vyl >0
2. |vxy| <p
3. Foreachi> 0,uvixy'z €L

+ Note that vxy can appear anywhere in the string as long as they are
no longer than p symbols long

Non-Context-Free Languages

Pumping Lemma (CFL): Inturtion

- |t the grammar generates a long enough string then the parse tree
for that derivation must be "tall enough"

» |f each node in a tree has at most b children and the tree has height
h, what is the maximum number of leaves it can have!

. ph

+ If a tree has at least 5! leaves and each node has degree at most b,
what can we say about the height!

« Atleasth + 1

