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Announcements & Logistics
• Hand in Exercise # 7,  no exercise for next class 


• HW 4 out,  due tomorrow 

• Short homework to allow time for midterm prep


• Practice midterm will be released soon

• Thursday lecture we will spend some time on review/practice questions


• Reminder:  Midterm 1 in-class on Oct 7

• Closed book but can ask clarification on definitions

• Several textbooks will be available for referencing 

• Everything up to HW 4 included


• Today's office hours slightly shifted  2.30-3.55 pm



Last Time
• Introduced CFGs as the next model of computation


• Recursion provide more power and state  

• Practiced CFGs

• Any regular language has a regular CFG that generates it and a regular 

CFG can be recognized by a DFA

• CFGs are closed under union, concatenation and Kleene star



Closure Properties of CFLs
• CFLs are closed under 


• Union


• Concatenation 


• Kleene star


• Important.   Not closer under complement and intersection!



Closure Properties of CFLs



Automata for CFGs
• Regular Languages :  Finite Automata 


• Context-free languages:   ??



Pushdown Automata
• Basically an NFA with a stack (pushdown store)


• The stack can consist of unlimited number symbols but can only be 
read and altered at the top:


• Can only pop symbol from top or push symbol to top 



Pushdown Automata Transitions
• Transitions of a PDA have two parts:


• State transition and stack manipulation (push/pop)


• If in state  reading input symbol  and  on the stack, replace  
with  on the stack and enter state  


•

•

• In state diagram arrow goes from  with label 

p a b b
c q

(p, a, b) → (q, c)

δ : Q × Σε × Γε → 𝒫(Q × Γε)

p → q a, b → c



Pushdown Automata Transitions
• If in state  reading input symbol  and  on the stack, replace  with 

 on the stack and enter state , that is,  

• In state diagram arrow goes from  with label 

• (Non-determinism)  means without reading any input 
symbol, one branch jumps from  to , popping  and pushing   


• (Push only)  means read  from the input, move from state  
to  without popping anything from stack and pushing  on it


• (Pop only)  means read read  from the input, move from 
state  to  popping  off the stack, without pushing anything

p a b b
c q (p, a, b) → (q, c)

p → q a, b → c

ε, b → c
p q b c

a, ε → c a p
q c

a, b → ε a
p q b



Formal Definition:  PDA
• A pushdown automaton is a six tuple  where 


•  is the finite set of states


•  is a finite alphabet (the input symbols)


•  is a finite tape alphabet (the stack symbols)


•  is the transition function


•  is the initial state and  is the set of accept states

M = (Q, Σ, Γ, δ, q0F)

Q

Σ

Γ

δ : Q × Σε × Γε → 𝒫(Q × Γε)

q0 ∈ Q F ⊆ Q



Example PDA
• Consider the language over  of all strings made up of 

correctly nested brackets


• CFG for this language:  

• Now lets create a push-down automata for this language


• What to store on the stack?

Σ = {[, ]}

S → ε | [S] | SS



Example PDA for Balanced Brackets

Recall:  A transition of the form a, b → z 
means “if the current input symbol is a and 

the current stack symbol is b, then follow this 
transition, pop b, and push the string z”



PDA Acceptance:  Informal 
• A PDA accepts an input string  if there is a computation that:


• starts in the start state and empty stack


• has a sequence of valid transitions


• at least one computation branch ends in an accept state with an 
empty stack


• A PDA computation branch "dies off" if


• no transition matches the input (as in an NFA), or if


• no rule matches the stack states


• Language of a PDA: set of all strings that are accepted by it

w



PDA More Examples
• L = {0n1n | n ≥ 0}



PDA More Examples
• PDA for  L = {aibjck | i = j or i = k}

Guess which case 
occurs: #a = #b  

or #b = #c



PDA More Examples
• PDA for  L = {aibjck | i = j or i = k}



PDA More Examples
• PDA for  L = {aibjck | i = j or i = k}



CFGs Not Closed under Intersection
• Consider  and 

• Both are context-free languages 


• However,  their intersection  is not a CFL


• We will prove this by pumping lemma soon


• Intuition:  Only one stack: can either match a's and b's or a's 

and c's but not both (once something is popped, gone forever)

L1 = {aibjck | i, j, k ≥ 0 and i = j}

L2 = {aibjck | i, j, k ≥ 0 and i = k}

L1 ∩ L2 = {aibici | i ≥ 0}



Practice Problems
• Draw a PDA for the following languages:


•  

• Can you also give a CFG generating such strings?


•

L = {aibjck | i, j, k ≥ 0 and i + k = j}

L = {wwR | w ∈ {0,1}*}



Few Things to Note
• PDAs can be a little tricky to draw


• Need to worry about non-determinism + stack at the same time


• Don't confuse the  which is a NFA "guess" from the  in stack 
transition which indicates push only/pop only


• Remember that whenever either the input symbol or top of stack 
doesn't match an available rule, that branch dies off


• Sometimes you may want to push more than one symbol at once


• Abuse notation to write   (pop  then push  back 
followed by push 

ε ε

a, $ → $b $ $
b



Equivalence:  CFG  PDA⟺

Theorem.  A language is context-free if and only it is 
recognized by some (non-deterministic) pushdown automaton.

Note:  Unlike DFA and NFA, non-deterministic PDAs are more 
powerful than deterministic PDAs.

Won't prove this formally but will 
discuss high-level intuition 
towards the end of lecture



Intuition:  CFG  PDA⟹
• Consider a CFG 

• Construct a PDA with three main states:  start, loop and accept 
state (some extra states for bookkeeping)


• Start by putting  on the stack


• Each time top of stack is a variable , guess a rule of the type 
 replace  with RHS of the rule 


• Each time top of stack is a terminal match it to the current input 
symbol (computation dies off it they don't match)


• If you reach bottom of stack at any point in a branch, accept 


• All variables have been replaced and non-terminals matched

G = (V, Σ, R, S)

S

A
A → u A



Example:  CFG  PDA⟹



Intuition:  PDA  CFG⟹
• Wlog assume the PDA has one accept state, empties stack before 

accepting and each move is a push or pop (but not both)


• Let  be the states of the PDA


• Create variables for each pair of states: 

•  generates all strings that take the PDA from  to  starting from 
an empty stack and ending at an empty stack


• Such strings can also take PDA from  to  from a non-empty 
stack returning to exactly the same stack contents


• Start variable is  where  is start state and  is accept state

Q

{Apq | p, q ∈ Q}

Apq p q

p q

Aq0,qf
q0 qf



Intuition:  PDA  CFG⟹
• Consider the computation of the PDA on the input string that takes 

it from a state  (and empty stack) to a state  (and empty stack)


• Two possibilities:  


• Stack is only empty at the beginning and end:  first symbol pushed 
first is the last symbol to be popped


• Stack is empty in the middle of the computation (the first symbol 
pushed is popped off at some point)

p q



CFG Rule for Possibility 1
• Stack is only empty at the beginning and end:  first symbol pushed 

first is the last symbol to be popped


• That is,  and  where PDA goes 
from  to  after pushing  and  to  after popping 

• Then, add the rule 

(p, a, ϵ) → (r, u) (b, s, u) → (q, ϵ)
p q a s r b

Apq → aArsb



CFG Rule for Possibility 2
• Stack is empty in the middle of the computation (the first symbol 

pushed is popped off at some point)


• Add the rule  for every triple Apq → AprArq p, q, r ∈ Q



Base Case
• Finally, for each , add the rule p ∈ Q App → ε



All At Once
• Given PDA , construct CFG with 

variables  and start variable and rules:
P = (Q, Σ, Γ, δ, q0, {qaccept})

{Apq | p, q ∈ Q} Aq0qaccept



Intuition:   Why it Works?
• The proof of correctness relies on the following claim:


•  generates  if and only if string  can bring  from  with 
empty stack to  with empty stack


• Both directions are induction:


•  Induction on the derivation length 


•  Induction on the computation length

Apq x x P p
q

( ⇒ )

( ⇐ )



Non-Context-Free Languages
• Proved using a similar "pumping lemma" as regular languages


• With respect to regular languages:


• pumping lemma exploits the fact that if a string is long enough, 
a state is repeated in the DFA for the language (loop)


• With respect to CFLs:


• pumping lemma exploits the fact that if a string is long enough, 
deriving it requires recursion (repeated use of a variable) 


• Lemma based length of parse trees for derivations



Parse Trees and CFGs
• Consider the CFG for : 

 
 

• Consider a parse tree for 

A = {w#wR | w ∈ {a, b}*}

S → aSa | bSb | #

w = aab#baa



Parse Trees and CFGs
• Variable  is repeated


• Can "pump up" or "pump down" to create 
strings in the language


• Replace yellow with violet: 

• Replace violet with yellow:  

S

aa#aa

aabb#bba



Pumping Lemma:  CFLs
• Statement:  If  is a CFL, then there is a number  (the pumping 

length) where for any  of length at least , it is possible to 
divide  into five pieces  satisfying the conditions


1.

2.   


3. For each , 

• Note that  can appear anywhere in the string as long as they are 
no longer than  symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p



Non-Context-Free Languages



Pumping Lemma (CFL):  Intuition
• If the grammar generates a long enough string then the parse tree 

for that derivation must be "tall enough"


• If each node in a tree has at most  children and the tree has height 
, what is the maximum number of leaves it can have?


•

• If a tree has at least  leaves and each node has degree at most , 
what can we say about the height?


• At least 

b
h

bh

bh+1 b

h + 1


