CSCI 361 Lecture 8: Push-down Automata

Shikha Singh

Announcements & Logistics

Hand in Exercise # 7, no exercise for next class

- **HW 4** out, due tomorrow
 - Short homework to allow time for midterm prep
- Practice midterm will be released soon
- Thursday lecture we will spend some time on review/practice questions
- **Reminder:** Midterm I in-class on Oct 7
 - Closed book but can ask clarification on definitions
 - Several textbooks will be available for referencing
 - Everything up to HW 4 included
- Today's office hours slightly shifted 2.30-3.55 pm

Last Time

- Introduced CFGs as the next model of computation
 - Recursion provide more power and state
- Practiced CFGs
- Any regular language has a regular CFG that generates it and a regular CFG can be recognized by a DFA
- CFGs are closed under union, concatenation and Kleene star

Closure Properties of CFLs

- CFLs are closed under
 - Union
 - Concatenation
 - Kleene star
- Important. Not closer under complement and intersection!

Closure Properties of CFLs

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union: $L(G_1) \cup L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

Concatenation: $L(G_1)L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \to S_1S_2\}$

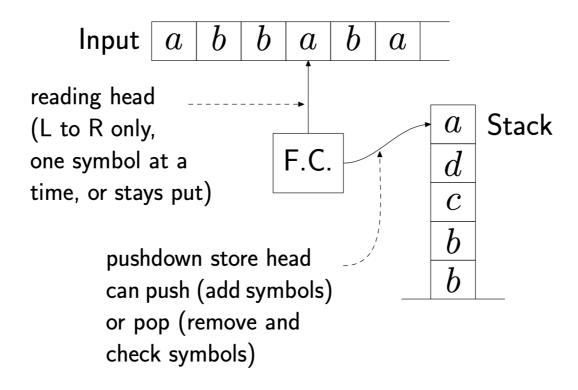
Kleene *: $L(G_1)^*$ is generated by $R_1 \cup \{S \rightarrow e | S \rightarrow S_1S\}$

Automata for CFGs

- Regular Languages : Finite Automata
- Context-free languages: ??

Pushdown Automata

- Basically an NFA with a stack (pushdown store)
- The stack can consist of unlimited number symbols but can only be read and altered at the top:
 - Can only pop symbol from top or push symbol to top



Pushdown Automata Transitions

- Transitions of a PDA have two parts:
 - State transition and stack manipulation (push/pop)
 - If in state p reading input symbol a and b on the stack, replace b with c on the stack and enter state q
 - $(p, a, b) \rightarrow (q, c)$
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathscr{P}(Q \times \Gamma_{\varepsilon})$
 - In state diagram arrow goes from $p \rightarrow q$ with label $a, b \rightarrow c$

Pushdown Automata Transitions

- If in state p reading input symbol a and b on the stack, replace b with c on the stack and enter state q, that is, $(p, a, b) \rightarrow (q, c)$
- In state diagram arrow goes from $p \rightarrow q$ with label $a, b \rightarrow c$
 - (Non-determinism) $\varepsilon, b \to c$ means without reading any input symbol, one branch jumps from p to q, popping b and pushing c
 - (Push only) $a, \varepsilon \to c$ means read a from the input, move from state p to q without popping anything from stack and pushing c on it
 - (Pop only) $a,b \to \varepsilon$ means read read a from the input, move from state p to q popping b off the stack, without pushing anything

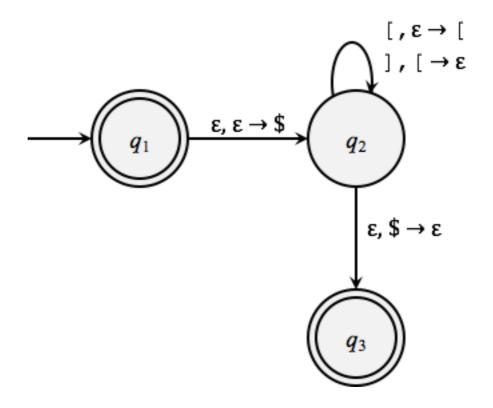
Formal Definition: PDA

- A pushdown automaton is a six tuple $M=(Q,\Sigma,\Gamma,\delta,q_0F)$ where
 - Q is the finite set of states
 - Σ is a finite alphabet (the input symbols)
 - Γ is a finite tape alphabet (the stack symbols)
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function
 - $q_0 \in Q$ is the initial state and $F \subseteq Q$ is the set of accept states

Example PDA

- Consider the language over $\Sigma = \{[,]\}$ of all strings made up of correctly nested brackets
- CFG for this language: $S \rightarrow \varepsilon \mid [S] \mid SS$
- · Now lets create a push-down automata for this language
- What to store on the stack?

Example PDA for Balanced Brackets

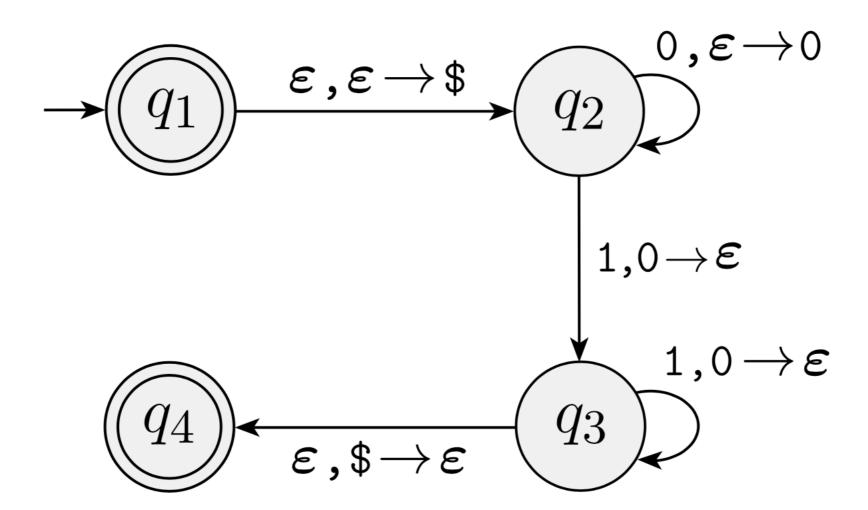


Recall: A transition of the form a, b → z means "if the current input symbol is a and the current stack symbol is b, then follow this transition, pop b, and push the string z"

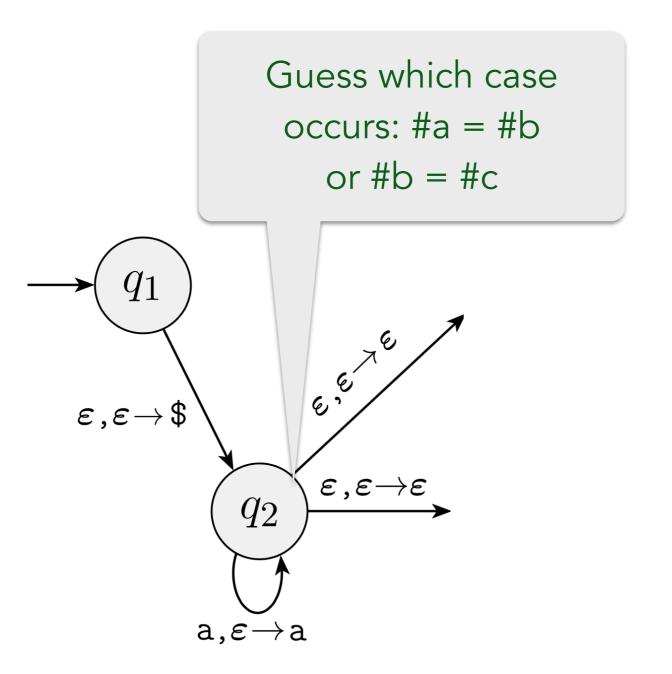
PDA Acceptance: Informal

- A PDA accepts an input string w if there is a computation that:
 - starts in the start state and empty stack
 - has a sequence of valid transitions
 - at least one computation branch ends in an accept state with an empty stack
- A PDA computation branch "dies off" if
 - no transition matches the input (as in an NFA), or if
 - no rule matches the stack states
- Language of a PDA: set of all strings that are accepted by it

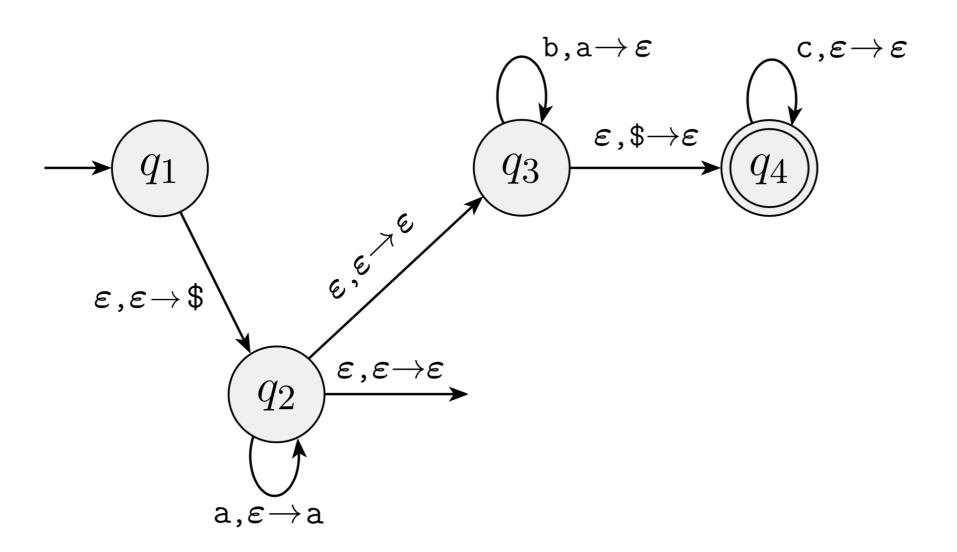
•
$$L = \{0^n 1^n \mid n \ge 0\}$$



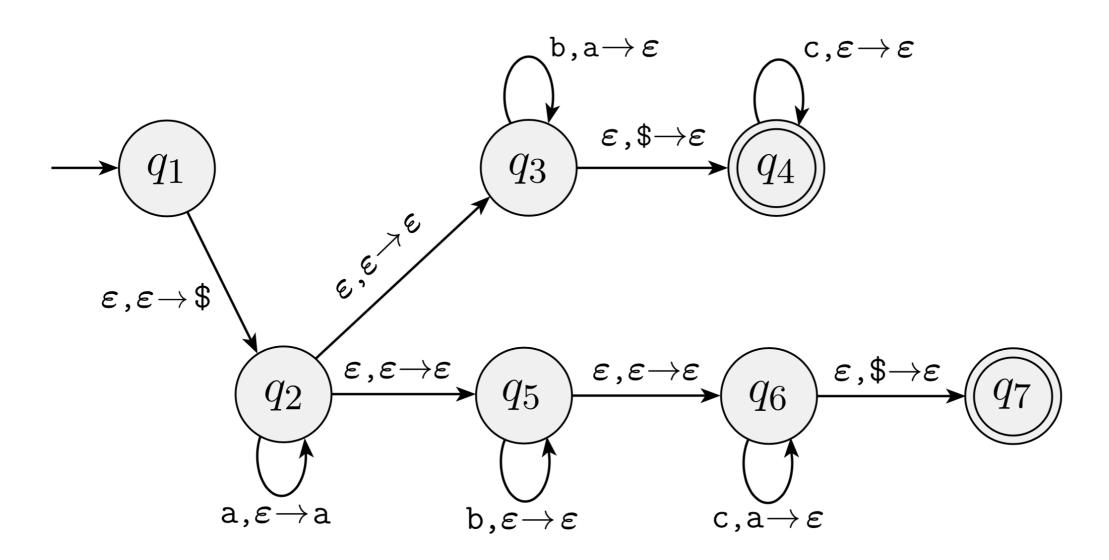
• PDA for $L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$



• PDA for $L = \{a^ib^jc^k \mid i=j \text{ or } i=k\}$



• PDA for $L = \{a^ib^jc^k \mid i=j \text{ or } i=k\}$



CFGs Not Closed under Intersection

- Consider $L_1=\{a^ib^jc^k\mid i,j,k\geq 0 \text{ and } i=j\}$ and $L_2=\{a^ib^jc^k\mid i,j,k\geq 0 \text{ and } i=k\}$
- Both are context-free languages
- However, their intersection $L_1 \cap L_2 = \{a^ib^ic^i | i \geq 0\}$ is not a CFL
 - · We will prove this by pumping lemma soon
 - Intuition: Only one stack: can either match a's and b's or a's and c's but not both (once something is popped, gone forever)

Practice Problems

- Draw a PDA for the following languages:
 - $L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + k = j\}$
 - Can you also give a CFG generating such strings?
 - $L = \{ww^R \mid w \in \{0,1\}^*\}$

Few Things to Note

- PDAs can be a little tricky to draw
 - Need to worry about non-determinism + stack at the same time
 - Don't confuse the arepsilon which is a NFA "guess" from the arepsilon in stack transition which indicates push only/pop only
 - Remember that whenever either the input symbol or top of stack doesn't match an available rule, that branch dies off
- Sometimes you may want to push more than one symbol at once
 - Abuse notation to write $a,\$\to\$ b$ (pop \$ then push \$ back followed by push b

Equivalence: CFG \iff PDA

Theorem. A language is context-free if and only it is recognized by some (non-deterministic) pushdown automaton.

Won't prove this formally but will discuss high-level intuition towards the end of lecture

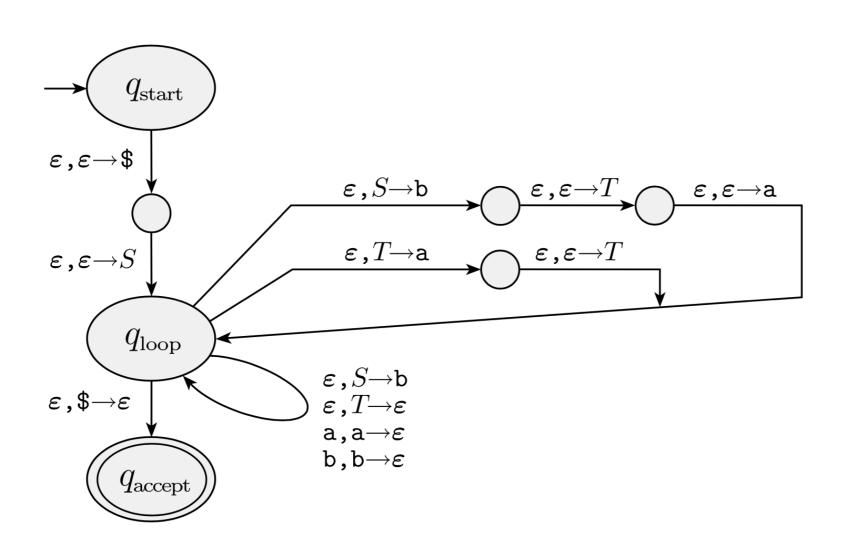
Note: Unlike DFA and NFA, non-deterministic PDAs are more powerful than deterministic PDAs.

Intuition: CFG \Rightarrow PDA

- Consider a CFG $G = (V, \Sigma, R, S)$
- Construct a PDA with three main states: start, loop and accept state (some extra states for bookkeeping)
 - Start by putting S on the stack
 - Each time top of stack is a variable A, guess a rule of the type $A \rightarrow u$ replace A with RHS of the rule
 - Each time top of stack is a terminal match it to the current input symbol (computation dies off it they don't match)
 - · If you reach bottom of stack at any point in a branch, accept
 - · All variables have been replaced and non-terminals matched

Example: $CFG \Longrightarrow PDA$

$$S o \mathtt{a} T\mathtt{b} \mid \mathtt{b}$$
 $T o T\mathtt{a} \mid oldsymbol{arepsilon}$



Intuition: PDA \(\infty\) CFG

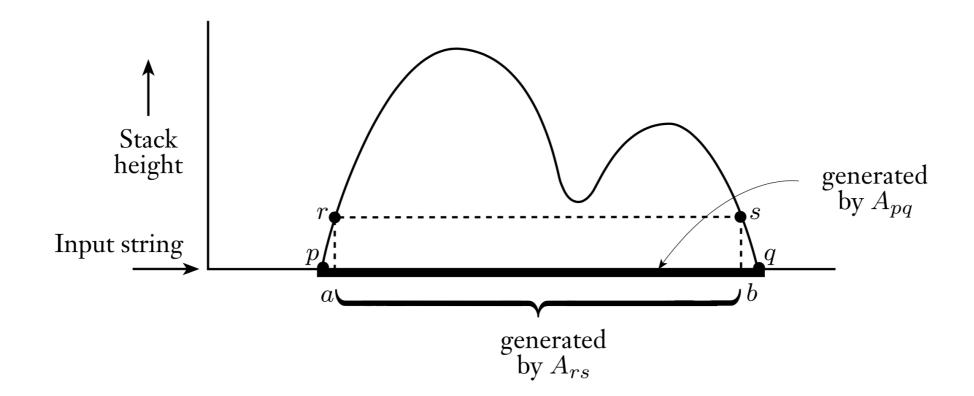
- Wlog assume the PDA has one accept state, empties stack before accepting and each move is a push or pop (but not both)
- Let Q be the states of the PDA
- Create variables for each pair of states: $\{A_{pq} \mid p,q \in Q\}$
- A_{pq} generates all strings that take the PDA from p to q starting from an empty stack and ending at an empty stack
 - Such strings can also take PDA from p to q from a non-empty stack returning to exactly the same stack contents
- Start variable is $A_{q_0,q_{\!\scriptscriptstyle f}}$ where q_0 is start state and $q_{\!\scriptscriptstyle f}$ is accept state

Intuition: PDA \(\infty\) CFG

- Consider the computation of the PDA on the input string that takes it from a state p (and empty stack) to a state q (and empty stack)
- Two possibilities:
 - Stack is only empty at the beginning and end: first symbol pushed first is the last symbol to be popped
 - Stack is empty in the middle of the computation (the first symbol pushed is popped off at some point)

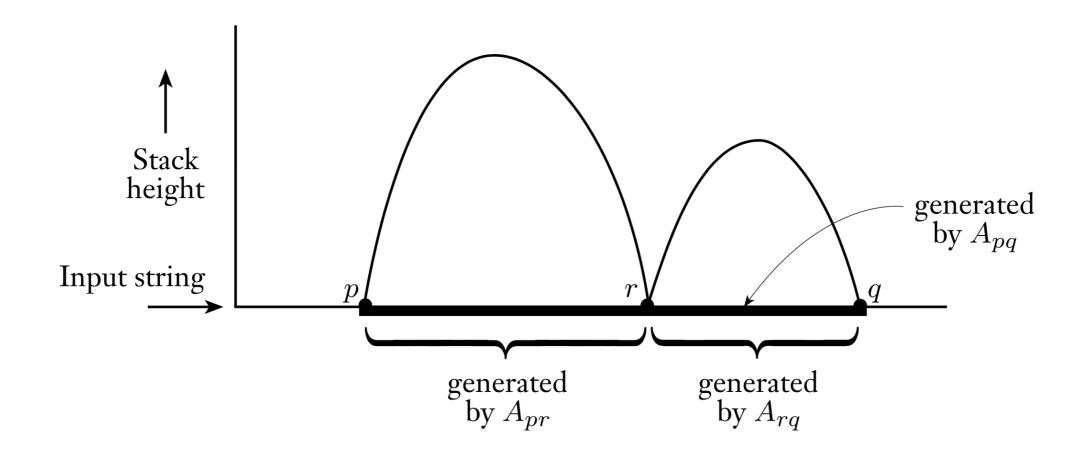
CFG Rule for Possibility I

- Stack is only empty at the beginning and end: first symbol pushed first is the last symbol to be popped
- That is, $(p, a, \epsilon) \to (r, u)$ and $(b, s, u) \to (q, \epsilon)$ where PDA goes from p to q after pushing a and s to r after popping b
- Then, add the rule $A_{pq} \rightarrow aA_{rs}b$



CFG Rule for Possibility 2

- Stack is empty in the middle of the computation (the first symbol pushed is popped off at some point)
- Add the rule $A_{pq} \to A_{pr} A_{rq}$ for every triple $p,q,r \in \mathcal{Q}$



Base Case

- Finally, for each $p\in \mathcal{Q}$, add the rule $A_{pp}\to \varepsilon$

All At Once

- Given PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,\{q_{\rm accept}\})$, construct CFG with variables $\{A_{pq}\mid p,q\in Q\}$ and start variable $A_{q_0q_{\rm accept}}$ and rules:
- **1.** For each $p, q, r, s \in Q$, $u \in \Gamma$, and $a, b \in \Sigma_{\varepsilon}$, if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) , put the rule $A_{pq} \to aA_{rs}b$ in G.
- **2.** For each $p, q, r \in Q$, put the rule $A_{pq} \to A_{pr}A_{rq}$ in G.
- **3.** Finally, for each $p \in Q$, put the rule $A_{pp} \to \varepsilon$ in G.

Intuition: Why it Works?

- The proof of correctness relies on the following claim:
 - A_{pq} generates x if and only if string x can bring P from p with empty stack to q with empty stack
- Both directions are induction:
 - (⇒) Induction on the derivation length
 - (←) Induction on the computation length

Non-Context-Free Languages

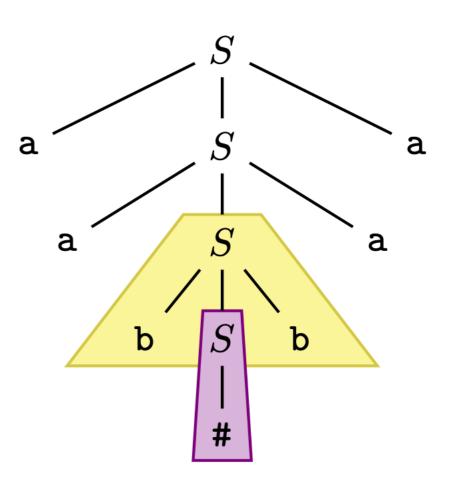
- Proved using a similar "pumping lemma" as regular languages
- With respect to regular languages:
 - pumping lemma exploits the fact that if a string is long enough, a state is repeated in the DFA for the language (loop)
- With respect to CFLs:
 - pumping lemma exploits the fact that if a string is long enough, deriving it requires recursion (repeated use of a variable)
- Lemma based length of parse trees for derivations

Parse Trees and CFGs

• Consider the CFG for $A = \{w\#w^R \mid w \in \{a,b\}^*\}$:

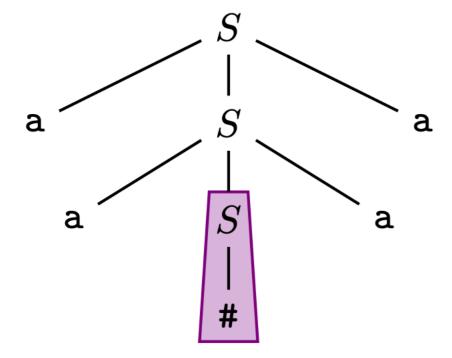
$$S \rightarrow aSa \mid bSb \mid \#$$

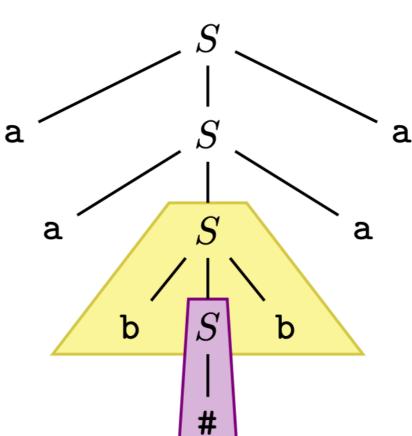
• Consider a parse tree for w = aab#baa

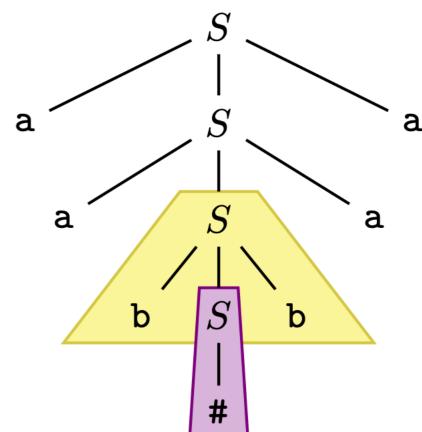


Parse Trees and CFGs

- Variable S is repeated
- Can "pump up" or "pump down" to create strings in the language
 - Replace yellow with violet: aa#aa
 - Replace violet with yellow: aabb#bba



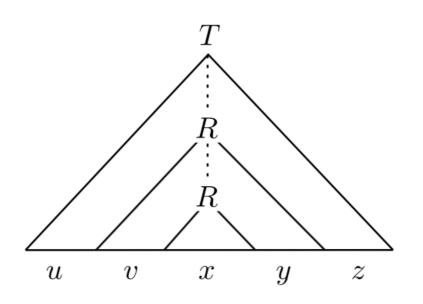


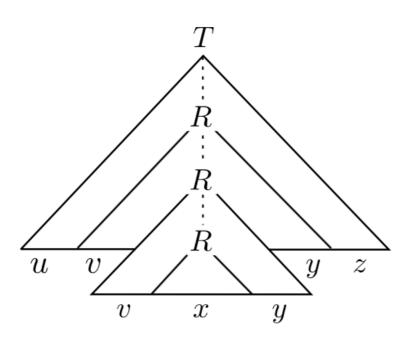


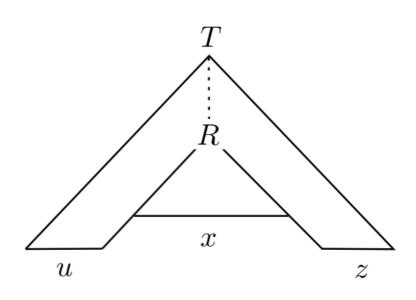
Pumping Lemma: CFLs

- Statement: If L is a CFL, then there is a number p (the pumping length) where for any $s \in L$ of length at least p, it is possible to divide s into five pieces s = uvxyz satisfying the conditions
 - |vy| > 0
 - $2. |vxy| \le p$
 - 3. For each $i \ge 0$, $uv^i xy^i z \in L$
- Note that vxy can appear anywhere in the string as long as they are no longer than p symbols long

Non-Context-Free Languages







Pumping Lemma (CFL): Intuition

- If the grammar generates a long enough string then the parse tree for that derivation must be "tall enough"
- If each node in a tree has at most b children and the tree has height h, what is the maximum number of leaves it can have?
 - b^h
- If a tree has at least b^{h+1} leaves and each node has degree at most b, what can we say about the height?
 - At least h+1