
CSCI 361 Lecture 8:  
Push-down Automata

Shikha Singh

Announcements & Logistics
• Hand in Exercise # 7, no exercise for next class

• HW 4 out, due tomorrow

• Short homework to allow time for midterm prep

• Practice midterm will be released soon

• Thursday lecture we will spend some time on review/practice questions

• Reminder: Midterm 1 in-class on Oct 7

• Closed book but can ask clarification on definitions

• Several textbooks will be available for referencing

• Everything up to HW 4 included

• Today's office hours slightly shifted 2.30-3.55 pm

Last Time
• Introduced CFGs as the next model of computation

• Recursion provide more power and state

• Practiced CFGs

• Any regular language has a regular CFG that generates it and a regular

CFG can be recognized by a DFA

• CFGs are closed under union, concatenation and Kleene star

Closure Properties of CFLs
• CFLs are closed under

• Union

• Concatenation

• Kleene star

• Important. Not closer under complement and intersection!

Closure Properties of CFLs

Automata for CFGs
• Regular Languages : Finite Automata

• Context-free languages: ??

Pushdown Automata
• Basically an NFA with a stack (pushdown store)

• The stack can consist of unlimited number symbols but can only be
read and altered at the top:

• Can only pop symbol from top or push symbol to top

Pushdown Automata Transitions
• Transitions of a PDA have two parts:

• State transition and stack manipulation (push/pop)

• If in state reading input symbol and on the stack, replace
with on the stack and enter state

•

•

• In state diagram arrow goes from with label

p a b b
c q

(p, a, b) → (q, c)

δ : Q × Σε × Γε → 𝒫(Q × Γε)

p → q a, b → c

Pushdown Automata Transitions
• If in state reading input symbol and on the stack, replace with

 on the stack and enter state , that is,

• In state diagram arrow goes from with label

• (Non-determinism) means without reading any input
symbol, one branch jumps from to , popping and pushing

• (Push only) means read from the input, move from state
to without popping anything from stack and pushing on it

• (Pop only) means read read from the input, move from
state to popping off the stack, without pushing anything

p a b b
c q (p, a, b) → (q, c)

p → q a, b → c

ε, b → c
p q b c

a, ε → c a p
q c

a, b → ε a
p q b

Formal Definition: PDA
• A pushdown automaton is a six tuple where

• is the finite set of states

• is a finite alphabet (the input symbols)

• is a finite tape alphabet (the stack symbols)

• is the transition function

• is the initial state and is the set of accept states

M = (Q, Σ, Γ, δ, q0F)

Q

Σ

Γ

δ : Q × Σε × Γε → 𝒫(Q × Γε)

q0 ∈ Q F ⊆ Q

Example PDA
• Consider the language over of all strings made up of

correctly nested brackets

• CFG for this language:

• Now lets create a push-down automata for this language

• What to store on the stack?

Σ = {[,]}

S → ε | [S] | SS

Example PDA for Balanced Brackets

Recall: A transition of the form a, b → z
means “if the current input symbol is a and

the current stack symbol is b, then follow this
transition, pop b, and push the string z”

PDA Acceptance: Informal
• A PDA accepts an input string if there is a computation that:

• starts in the start state and empty stack

• has a sequence of valid transitions

• at least one computation branch ends in an accept state with an
empty stack

• A PDA computation branch "dies off" if

• no transition matches the input (as in an NFA), or if

• no rule matches the stack states

• Language of a PDA: set of all strings that are accepted by it

w

PDA More Examples
• L = {0n1n | n ≥ 0}

PDA More Examples
• PDA for L = {aibjck | i = j or i = k}

Guess which case
occurs: #a = #b  

or #b = #c

PDA More Examples
• PDA for L = {aibjck | i = j or i = k}

PDA More Examples
• PDA for L = {aibjck | i = j or i = k}

CFGs Not Closed under Intersection
• Consider and

• Both are context-free languages

• However, their intersection is not a CFL

• We will prove this by pumping lemma soon

• Intuition: Only one stack: can either match a's and b's or a's

and c's but not both (once something is popped, gone forever)

L1 = {aibjck | i, j, k ≥ 0 and i = j}

L2 = {aibjck | i, j, k ≥ 0 and i = k}

L1 ∩ L2 = {aibici | i ≥ 0}

Practice Problems
• Draw a PDA for the following languages:

•

• Can you also give a CFG generating such strings?

•

L = {aibjck | i, j, k ≥ 0 and i + k = j}

L = {wwR | w ∈ {0,1}*}

Few Things to Note
• PDAs can be a little tricky to draw

• Need to worry about non-determinism + stack at the same time

• Don't confuse the which is a NFA "guess" from the in stack
transition which indicates push only/pop only

• Remember that whenever either the input symbol or top of stack
doesn't match an available rule, that branch dies off

• Sometimes you may want to push more than one symbol at once

• Abuse notation to write (pop then push back
followed by push

ε ε

a, $ → $b $ $
b

Equivalence: CFG PDA⟺

Theorem. A language is context-free if and only it is
recognized by some (non-deterministic) pushdown automaton.

Note: Unlike DFA and NFA, non-deterministic PDAs are more
powerful than deterministic PDAs.

Won't prove this formally but will
discuss high-level intuition
towards the end of lecture

Intuition: CFG PDA⟹
• Consider a CFG

• Construct a PDA with three main states: start, loop and accept
state (some extra states for bookkeeping)

• Start by putting on the stack

• Each time top of stack is a variable , guess a rule of the type
 replace with RHS of the rule

• Each time top of stack is a terminal match it to the current input
symbol (computation dies off it they don't match)

• If you reach bottom of stack at any point in a branch, accept

• All variables have been replaced and non-terminals matched

G = (V, Σ, R, S)

S

A
A → u A

Example: CFG PDA⟹

Intuition: PDA CFG⟹
• Wlog assume the PDA has one accept state, empties stack before

accepting and each move is a push or pop (but not both)

• Let be the states of the PDA

• Create variables for each pair of states:

• generates all strings that take the PDA from to starting from
an empty stack and ending at an empty stack

• Such strings can also take PDA from to from a non-empty
stack returning to exactly the same stack contents

• Start variable is where is start state and is accept state

Q

{Apq | p, q ∈ Q}

Apq p q

p q

Aq0,qf
q0 qf

Intuition: PDA CFG⟹
• Consider the computation of the PDA on the input string that takes

it from a state (and empty stack) to a state (and empty stack)

• Two possibilities:

• Stack is only empty at the beginning and end: first symbol pushed
first is the last symbol to be popped

• Stack is empty in the middle of the computation (the first symbol
pushed is popped off at some point)

p q

CFG Rule for Possibility 1
• Stack is only empty at the beginning and end: first symbol pushed

first is the last symbol to be popped

• That is, and where PDA goes
from to after pushing and to after popping

• Then, add the rule

(p, a, ϵ) → (r, u) (b, s, u) → (q, ϵ)
p q a s r b

Apq → aArsb

CFG Rule for Possibility 2
• Stack is empty in the middle of the computation (the first symbol

pushed is popped off at some point)

• Add the rule for every triple Apq → AprArq p, q, r ∈ Q

Base Case
• Finally, for each , add the rule p ∈ Q App → ε

All At Once
• Given PDA , construct CFG with

variables and start variable and rules:
P = (Q, Σ, Γ, δ, q0, {qaccept})

{Apq | p, q ∈ Q} Aq0qaccept

Intuition: Why it Works?
• The proof of correctness relies on the following claim:

• generates if and only if string can bring from with
empty stack to with empty stack

• Both directions are induction:

• Induction on the derivation length

• Induction on the computation length

Apq x x P p
q

(⇒)

(⇐)

Non-Context-Free Languages
• Proved using a similar "pumping lemma" as regular languages

• With respect to regular languages:

• pumping lemma exploits the fact that if a string is long enough,
a state is repeated in the DFA for the language (loop)

• With respect to CFLs:

• pumping lemma exploits the fact that if a string is long enough,
deriving it requires recursion (repeated use of a variable)

• Lemma based length of parse trees for derivations

Parse Trees and CFGs
• Consider the CFG for : 

 
 

• Consider a parse tree for

A = {w#wR | w ∈ {a, b}*}

S → aSa | bSb | #

w = aab#baa

Parse Trees and CFGs
• Variable is repeated

• Can "pump up" or "pump down" to create 
strings in the language

• Replace yellow with violet:

• Replace violet with yellow:

S

aa#aa

aabb#bba

Pumping Lemma: CFLs
• Statement: If is a CFL, then there is a number (the pumping

length) where for any of length at least , it is possible to
divide into five pieces satisfying the conditions

1.

2.

3. For each ,

• Note that can appear anywhere in the string as long as they are
no longer than symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p

Non-Context-Free Languages

Pumping Lemma (CFL): Intuition
• If the grammar generates a long enough string then the parse tree

for that derivation must be "tall enough"

• If each node in a tree has at most children and the tree has height
, what is the maximum number of leaves it can have?

•

• If a tree has at least leaves and each node has degree at most ,
what can we say about the height?

• At least

b
h

bh

bh+1 b

h + 1

