CSCI 361 Lecture 7: Context-Free Grammars

Shikha Singh

Announcements & Logistics

- HW 3 was due last night
- HW 4 will be released today and due next Wed (Oct 1)
- HW 2 graded feedback released
 - Let me know if you have any questions
- Solutions to HW I and HW 2 are on GLOW
- Hand in Exercise # 6 and pick up Exercise # 7
- Reminder: Midterm I in-class on Oct 7
 - Everything up to HW 4 included
- Practice Midterm will be released Oct I
- Question. Can you view the course calendar on the webpage?

Last Time

- Pumping lemma to prove languages are not regular
- More practice with recognizing non-regular languages and proving non-regularity

Today

- New model of computation that is slightly more powerful
 - Context-free languages

Last Time: Use Pumping Lemma

Problem 1. Prove that the language $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular.

Problem 2. Prove that $L = \{ww^R \mid w \in \{0,1\}^*\}$ is not regular.

Problem 3. Is the language $L = \{(ab)^i \circ (ab)^i \mid i \geq 0\}$ regular?

Problem 4. Prove that

 $L = \{w \mid w \in \{0,1\}^* \text{ and the number of Is in } w \text{ is not equal to the number of 0s in } w\}$ is not regular.

Solutions: Use Pumping Lemma

Problem 1. Prove that the language $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular.

Problem 2. Prove that $L = \{ww^R \mid w \in \{0,1\}^*\}$ is not regular.

Problem 1 and 2 solutions in the textbook.

Problem 3. Is the language $L = \{(ab)^i \circ (ab)^i \mid i \geq 0\}$ regular?

Yes! Can draw a DFA or regular expression $(abab)^*$

Problem 4. Prove $L = \{w \mid w \in \{0,1\}^*w \text{ has unequal number of 0s and 1s}\}$ is not regular.

Suppose L is regular, then \overline{L} should be regular (closed under intersection). But, $\overline{L} = \{w \in \{0,1\}^* \mid w \text{ has equal number of 0s and 1s}\}$. We proved \overline{L} is not regular!

Finite Automata Limitations

- Code snippets that can only store finitely many states
- (Theory vs PL) Remember that all models of computation we discuss map directly to programming constructs

Finite Automata Applications

- · Lexical analysis and parsing in compilers and programming in general
- Networking protocols and routing
- Circuit design and event-driven programming
- Synchronization of distributed devices

Context-Free Grammar

- Generative model to specify the next class of languages
- First used in the study of natural/human languages
- Applications in specification & compilation of programming languages
 - Syntax of a PL can be specified using its grammar
 - Compiler to check correct syntax uses a parser to check against valid rules

Example CFG

- CFGs consists of a collection of substitution rules, called productions
- Left-hand side of a rule has a single variable (or non-terminal)
- Right-hand side can consist of variables and terminals
- Conventions: upper-case letters for variables/non-terminals, lowercase letters for terminals,
 - S for start variable, usually on the LHS of the topmost rule
- Example: $S \rightarrow 0 \ S \ 1$ $S \rightarrow \varepsilon$

Derivations to Generarte Strings

- A sequence of substitutions starting with the start variable and ending in a string of terminals is a derivation
- For example, the derivation of 000111 using the grammar $S \to 0$ S 1 $S \to \varepsilon$
- $\cdot S \Longrightarrow 0S1 \Longrightarrow 00S11 \Longrightarrow 000S111 \Longrightarrow 000111$
- Can you guess the language of this grammar?
 - $L = \{0^n 1^n \mid n \ge 0\}$
- Thus, CFGs are more powerful than RegExp/DFA/NFAs

Language of a Grammar

- The set of all strings that can be generated using the rules of a grammar constitute the language of the grammar
- Any language that can be generated by some context-free grammar is called a context-free language

Parse Trees

- Rooted trees that represent a derivation
 - Root: start variable, leaves: derived string
 - Children of nodes represent the rule that is being applied
- Will be useful in discussing context-free languages

$$A \rightarrow 0 \ A \ 1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Formal Definition: CFG

- A context-free grammar G is a quadruple (V, Σ, R, S) where
 - V is a finite set called variables
 - Σ is a finite set (disjoint from V) called the **terminals**
 - R is a finite subset of $V \times (V \cup \Sigma)^*$ called rules, and
 - S (the start symbols) is a element of V
- For any $A \in V$ and $u \in (V \cup \Sigma)^*$, we write $A \to u$ if $(A, u) \in R$

Language of a Grammar

- If $v, w, v \in (V \cup \Sigma^*)$ and $A \to w$ is a rule, then we say uAv yields uwv and write $uAv \implies uwv$
- We say u derives v denoted $u \Longrightarrow v$, if there exists a sequence u_1, \ldots, u_k such that

$$u \implies u_1 \implies \cdots u_k \implies v$$

• The language of the grammar G is $L(G) = \{w \mid S \Longrightarrow w\}$

Grammar for English

A grammar for the English language tells us whether a sentence is "well formed". For example:

```
<Sentence> → <NounPhrase><VerbPhrase>
<NounPhrase> → <Article><NounUnit>
<NounUnit> → <Noun> | <Adjective><NounUnit>
<VerbPhrase> → <Verb> <NounPhrase>
<Article> → a | the
<Adjective> → big | small | black | green | colorless
<Noun> → dog | cat | mouse | bug | ideas
<Verb> → loves | chases | eats | sleeps
                                        Some generated sentences:
                                        The black dog loves the small cat
                                        A cat chases a mouse
```

The colorless bug chases the green ideas

Example: Programming Language Syntax

```
opram> → <block>
<block> \rightarrow \{<command-list> \}
<command-list> \rightarrow \epsilon
<command-list> → <command> <command-list>
<command> → <block>
<command> → <assignment>
<command> → <one-armed-conditional>
<command> → <two-armed-conditional>
<command> → <while-loop>
<assignment> \rightarrow <var> := <expr>
<one-armed-conditional> → if <expr> <command>
<two-armed-conditional> → if <expr> <command> else <command>
<while-loop> → while <expr> <command>
```

Possible generated program

```
{ x := 4 }
while x > 1
x := x - 1 }
```

Parsing

- A compiler for a programming language takes an input program in the language and converts it to a form more suitable for execution
- To do so, the compiler creates a parse tree of the code to be compiled using its CFG: this process is called parsing

- Every regular language can be described by some CFG
- Takeaway: CFGs are more "expressive" in power than regular expressions

- Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA for the regular language L
- We can construct a CFG G for L as follows
 - Make a variable Q_i for each state $q_i \in Q$
 - For each $q_i,q_j\in Q$ and $a\in \Sigma$ such that $\delta(q_i,a)=q_j$ a rule $Q_i\to a$ Q_j add a rule $Q_i\to a$ Q_j
 - Make Q_0 the start variable
 - Add $Q_i \to \varepsilon$ if $q_i \in F$

- Proof of correctness: L(M) = L(G)
- Suppose M accepts w, then there exists a sequence of states $q_0, q_1, ..., q_n$ that M enters when reading $w_1, ..., w_n$ st $q_n \in F$
- There exists derivation $Q_0 \Longrightarrow w_1Q_1 \Longrightarrow \cdots \Longrightarrow w_nQ_n$ in G and since $q_n \in F$, we have the rule $Q_n \to \varepsilon$, thus $w \in L(G)$
- The other direction is analogous

Direct translation?

- $S \rightarrow aQ_1 |bR_1| \varepsilon$
- $Q_1 \rightarrow aQ_1 \mid bQ_2$
- $Q_2 \rightarrow aQ_1 \mid bQ_2$
- $R_1 \rightarrow bR_1 \mid aR_2$
- $R_2 \rightarrow bR_1 \mid aR_2$
- Can create an easier CFG by breaking down into small pieces

- Union of strings that start and end in a, start and end in b, and arepsilon
- $S \to A |B| \varepsilon$
- $A \rightarrow aTa$
- $B \rightarrow bTb$
- $T \rightarrow aT |bT| \varepsilon$ (generates Σ^*)
- More intuitive!

Regular Grammars

- A CFG is regular if any occurrence of a variable on the RHS of a rule is as the rightmost symbol
- If a CFG is regular, there is a DFA that recognizes the same language
 - $Q = V \cup \{f\}$ (A state for each variable plus an accept state)
 - Rule $A \to aB$ becomes $\delta(A, a) = B$
 - If there is a $A \to a$ then $\delta(A, a) = f$

Exercise: Practice with CFGs

Describe a CFG for the following languages

- $L = \{w \in \{a, b\}^* \mid |w| \text{ is even } \}$
- $L = \{ w \in \{0,1\}^* \mid w = w^R \}$
- $L = \{w \in \{a, b\}^* \mid w \text{ has the same } \# \text{ of a's and b's} \}$

Solutions of CFGs

```
• L = \{w \in \{a, b\}^* \mid |w| \text{ is even } \}
   S \rightarrow aT \mid bT \mid \varepsilon
   T \rightarrow aS \mid bS
• L = \{w \in \{a, b\}^* \mid w = w^R\}
   S \rightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon
• L = \{w \in \{a, b\}^* \mid w \text{ has the same } \# \text{ of a's and b's} \}
    S \rightarrow SS
    S \rightarrow aSb
    S \rightarrow bSa
    S \rightarrow \varepsilon
```

Correctness Proof: Induction

To prove: $L(G) = \{w \mid w \text{ has an equal } \# \text{ of a's and b's} \}$ $S \rightarrow aSb$ (\Longrightarrow) Consider any $w \in L(G)$ and induct on the length k

of derivation of w

$$S \rightarrow SS$$

$$S \rightarrow bSa$$

$$S \to \varepsilon$$

(a)
$$k=1$$
 then $S \implies \varepsilon$ and ε has equal # of a's and b's

(b)
$$k > 1$$
 then either $S \implies SS \implies xy$

or
$$S \implies aSb \stackrel{*}{\Longrightarrow} axb$$

or
$$S \implies bSa \stackrel{*}{\Longrightarrow} aya$$

In each case, S derives x, y in less than k steps and by IH, they must have equal number of a's and b's

Correctness Proof: Induction

To prove: $L(G) = \{w \mid w \text{ has an equal } \# \text{ of a's and b's} \}$

 $S \to SS$

 (\Leftarrow) Consider any w with equal # of a's and b's

 $S \rightarrow bSa$

 $S \rightarrow aSb$

Can show $w \in L(G)$ by induction on |w|

 $S \to \varepsilon$

- (a) |w| = 0 then $w = \varepsilon$
- (b) |w| = k + 2 (as |w| must be even)

Can divide by 4 cases depending on first and last symbol of w, in each case show that the smaller string can be derived by IH

Case (i) and (ii) w = axb or w = bxa

Case (iii) and (iv) w = axa and w = bxb

CFG for this Language?

- CFG for $L = \{a^ib^jc^k \mid i=j \text{ or } j=k\}$
- Union of $L_1 = \{a^i b^i c^j | i, j \ge 0\}$ and $L_2 = \{a^i b^j c^j | i, j \ge 0\}$

- CFLs are closed under
 - Union
 - Concatenation
 - Kleene star
- Important. Not closer under complement and intersection!

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union:
$$L(G_1) \cup L(G_2)$$
 is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

NB: Assume that $V_1 - \Sigma_1, V_2 - \Sigma_2$ are disjoint.

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union: $L(G_1) \cup L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

Concatenation: $L(G_1)L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \to S_1S_2\}$

NB: Assume that $V_1 - \Sigma_1, V_2 - \Sigma_2$ are disjoint.

Given
$$G_1 = (V_1, \Sigma_1, R_1, S_1)$$

 $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Union: $L(G_1) \cup L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$

Concatenation: $L(G_1)L(G_2)$ is generated by $R_1 \cup R_2 \cup \{S \to S_1S_2\}$

Kleene *: $L(G_1)^*$ is generated by $R_1 \cup \{S \rightarrow e | S \rightarrow S_1S\}$

Automata for CFGs

- Regular Languages : Finite Automata
- Context-free languages: ??

Pushdown Automata

- Basically an NFA with a stack (pushdown store)
- The stack can consist of unlimited number symbols but can only be read and altered at the top:
 - Can only pop symbol from top or push symbol to top

Pushdown Automata Transitions

- Transitions of a PDA have two parts:
 - State transition and stack manipulation (push/pop)
 - If in state p reading input symbol a and b on the stack, replace b with c on the stack and enter state q
 - $(p, a, b) \rightarrow (q, c)$
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathscr{P}(Q \times \Gamma_{\varepsilon})$
 - In state diagram arrow goes from $p \rightarrow q$ with label $a, b \rightarrow c$

Formal Definition: PDA

- A pushdown automaton is a six tuple $M=(Q,\Sigma,\Gamma,\delta,q_0F)$ where
 - Q is the finite set of states
 - Σ is a finite alphabet (the input symbols)
 - Γ is a finite tape alphabet (the stack symbols)
 - $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function
 - $q_0 \in Q$ is the initial state and $F \subseteq Q$ is the set of accept states

Example PDA

- Consider the language over $\Sigma = \{[,]\}$ of all strings made up of correctly nested brackets
- CFG for this language: $S \rightarrow \varepsilon \mid [S] \mid SS$
- · Now lets create a push-down automata for this language
- What to store on the stack?

Example PDA for Balanced Brackets

Recall: A transition of the form a, b → z means "if the current input symbol is a and the current stack symbol is b, then follow this transition, pop b, and push the string z"