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Announcements & Logistics
• HW 3 was due last night


• HW 4 will be released today and due next Wed (Oct 1)

• HW 2 graded feedback released 


• Let me know if you have any questions

• Solutions to HW 1 and HW 2 are on GLOW


• Hand in Exercise # 6 and pick up Exercise # 7


• Reminder:  Midterm 1 in-class on Oct 7

• Everything up to HW 4 included


• Practice Midterm will be released Oct 1


• Question.  Can you view the course calendar on the webpage?



Last Time
• Pumping lemma to prove languages are not regular

• More practice with recognizing non-regular languages and proving non-

regularity 



Today
• New model of computation that is slightly more powerful


• Context-free languages  



Problem 1.  Prove that the language  is not regular.


Problem 2.  Prove that   is not regular.


Problem 3.  Is the language  regular?


Problem 4.  Prove that  
 

is not regular.


L = {aibi | i ∈ ℕ}

L = {wwR | w ∈ {0,1}*}

L = {(ab)i ∘ (ab)i | i ≥ 0}

L = {w | w ∈ {0,1}* and the number of 1s in w is not equal to the number of 0s in w}

Last Time: Use Pumping Lemma



Problem 1.  Prove that the language  is not regular.


Problem 2.  Prove that   is not regular.


Problem 1 and 2 solutions in the textbook.


Problem 3.  Is the language  regular?


Yes!   Can draw a DFA or regular expression 

Problem 4.  Prove   
is not regular.


Suppose  is regular, then  should be regular (closed under intersection).  But,

.  We proved  is not regular!    


L = {aibi | i ∈ ℕ}

L = {wwR | w ∈ {0,1}*}

L = {(ab)i ∘ (ab)i | i ≥ 0}

(abab)*

L = {w | w ∈ {0,1}*w has unequal number of 0s and 1s}

L L
L = {w ∈ {0,1}* |w has equal number of 0s and 1s} L

Solutions : Use Pumping Lemma



• Code snippets that can only store finitely many states


• (Theory vs PL) Remember that all models of computation we discuss 
map directly to programming constructs 

Finite Automata Limitations



• Lexical analysis and parsing in compilers and programming in general


• Networking protocols and routing


• Circuit design and event-driven programming


• Synchronization of distributed devices

Finite Automata Applications







• Generative model to specify the next class of languages 


• First used in the study of natural/human languages


• Applications in specification & compilation of programming languages


• Syntax of a PL can be specified using its grammar


• Compiler to check correct syntax uses a parser to check 
against valid rules

Context-Free Grammar



• CFGs consists of a collection of substitution rules, called productions


• Left-hand side of a rule has a single variable (or non-terminal)


• Right-hand side can consist of variables and terminals

• Conventions:   upper-case letters for variables/non-terminals, lower-
case letters for terminals, 


•  for start variable, usually on the LHS of the topmost rule


• Example:     
                 

S

S → 0 S 1
S → ε

Example CFG



• A sequence of substitutions starting with the start variable and 
ending in a string of terminals is a derivation  


• For example, the derivation of  using the grammar 
 

•

• Can you guess the language of this grammar?


•

• Thus, CFGs are more powerful than RegExp/DFA/NFAs

000111
S → 0 S 1
S → ε

S ⟹ 0S1 ⟹ 00S11 ⟹ 000S111 ⟹ 000111

L = {0n1n | n ≥ 0}

Derivations to Generarte Strings



• The set of all strings that can be generated using the rules of a 
grammar constitute the language of the grammar


• Any language that can be generated by some context-free grammar 
is called a context-free language

Language of a Grammar



• Rooted trees that represent a derivation 


• Root:  start variable, leaves:  derived string


• Children of nodes represent the rule that is being applied


• Will be useful in discussing context-free languages

Parse Trees

 A → 0 A 1
A → B
B → #



• A context-free grammar  is a quadruple  where


•  is a finite set called variables

•  is a finite set (disjoint from ) called the terminals

•  is a finite subset of  called rules, and


•  (the start symbols) is a element of 

• For any  and , we write  if 

G (V, Σ, R, S)

V

Σ V

R V × (V ∪ Σ)*

S V

A ∈ V u ∈ (V ∪ Σ)* A → u (A, u) ∈ R

Formal Definition:  CFG



• If  and  is a rule, then we say  yields 
 and write 

• We say  derives  denoted , if there exists a sequence 
 such that 

           

• The language of the grammar  is  

v, w, v ∈ (V ∪ Σ*) A → w uAv
uwv uAv ⟹ uwv

u v u
*

⟹ v
u1, …, uk

u ⟹ u1 ⟹ ⋯uk ⟹ v

G L(G) = {w | S
*

⟹ w}

Language of a Grammar



A grammar for the English language tells us whether a sentence is "well 
formed".  For example:


<Sentence>  →  <NounPhrase><VerbPhrase>

<NounPhrase>  →  <Article><NounUnit>

<NounUnit> → <Noun> | <Adjective><NounUnit> 

<VerbPhrase> → <Verb> <NounPhrase>

<Article> → a | the

<Adjective> → big | small | black | green | colorless	

<Noun> → dog | cat | mouse | bug | ideas

<Verb> → loves | chases | eats | sleeps

Grammar for English

Some generated sentences: 
The black dog loves the small cat 
A cat chases a mouse  
The colorless bug chases the green ideas



<program> → <block>

<block> → { <command-list> }

<command-list> → ԑ
<command-list> → <command> <command-list>

<command> → <block>

<command> → <assignment>

<command> → <one-armed-conditional>

<command> → <two-armed-conditional>

<command> → <while-loop>

<assignment> → <var> := <expr>

<one-armed-conditional> → if <expr> <command>

<two-armed-conditional> → if <expr> <command> else <command>

<while-loop> → while <expr> <command>

Example:  Programming Language Syntax

Possible generated program


{ x := 4

   while x >1

	 x := x -1 }



Parsing 
• A compiler for a programming language takes an input program in 

the language and converts it to a form more suitable for execution


• To do so, the compiler creates a parse tree of the code to be 
compiled using its CFG:  this process is called parsing



Regular Languages are Context-Free
• Every regular language can be described by some CFG


• Takeaway:  CFGs are more "expressive" in power than regular 
expressions



Regular Languages are Context-Free
• Let  be a DFA for the regular language 

• We can construct a CFG  for  as follows


• Make a variable  for each state 

• For each  and  such that  a rule 

 add a rule 

• Make  the start variable 


• Add  if 

M = (Q, Σ, δ, q0, F) L

G L

Qi qi ∈ Q

qi, qj ∈ Q a ∈ Σ δ(qi, a) = qj

Qi → a Qj Qi → a Qj

Q0

Qi → ε qi ∈ F



Regular Languages are Context-Free
• Proof of correctness:  

• Suppose  accepts , then there exists a sequence of states 
 that  enters when reading  st 

• There exists derivation  in  
and since , we have the rule  , thus 

• The other direction is analogous

L(M) = L(G)

M w
q0, q1, …, qn M w1, …, wn qn ∈ F

Q0 ⟹ w1Q1 ⟹ ⋯ ⟹ wnQn G
qn ∈ F Qn → ε w ∈ L(G)



• Direct translation?

Regular Languages are Context-Free



•

•

•

•

•

• Can create an easier CFG by 
breaking down into small pieces

S → aQ1 |bR1 |ε

Q1 → aQ1 |bQ2

Q2 → aQ1 |bQ2

R1 → bR1 |aR2

R2 → bR1 |aR2

Regular Languages are Context-Free



• Union of strings that start and end in , start and end in , and 

•

•

•

•   (generates )


• More intuitive! 

a b ε

S → A |B |ε

A → aTa

B → bTb

T → aT |bT |ε Σ*

Regular Languages are Context-Free



Regular Grammars
• A CFG is regular if any occurrence of a variable on the RHS of a 

rule is as the rightmost symbol


• If a CFG is regular, there is a DFA that recognizes the same language


•  (A state for each variable plus an accept state)


• Rule  becomes 

• If there is a  then   

Q = V ∪ {f}

A → aB δ(A, a) = B

A → a δ(A, a) = f



Describe a CFG for the following languages


•

•

•

L = {w ∈ {a, b}* | |w |  is even }

L = {w ∈ {0,1}* | w = wR}

L = {w ∈ {a, b}* | w has the same # of a's and b's}

Exercise:  Practice with CFGs



•  
  

•

•  
 

L = {w ∈ {a, b}* | |w |  is even }
S → aT | bT | ε
T → aS |bS

L = {w ∈ {a, b}* | w = wR}

L = {w ∈ {a, b}* | w has the same # of a's and b's}

Solutions of CFGs

S → aSa | bSb | a | b | ε

S → SS
S → aSb
S → bSa
S → ε



To prove:  

( ) Consider any  and induct on the length  
of derivation of 

(a)  then  and  has equal # of a's and b's 

(b)  then either   

or   

or  
In each case,  derives  in less than  steps and by IH, they must 
have equal number of a's and b's

L(G) = {w | w has an equal # of a's and b's}

⟹ w ∈ L(G) k
w

k = 1 S ⟹ ε ε

k > 1 S ⟹ SS
*

⟹ xy

S ⟹ aSb
*

⟹ axb

S ⟹ bSa
*

⟹ aya
S x, y k

Correctness Proof:  Induction
S → SS
S → aSb
S → bSa
S → ε



To prove:  

( ) Consider any  with equal # of a's and b's


Can show  by induction on 

(a)  then  
(b)   (as  must be even)


Can divide by 4 cases depending on first and last symbol of , in 
each case show that the smaller string can be derived by IH 


Case (i) and (ii)  or 

Case (iii) and (iv)  and 

L(G) = {w | w has an equal # of a's and b's}

⇐ w

w ∈ L(G) |w |

|w | = 0 w = ε
|w | = k + 2 |w |

w

w = axb w = bxa

w = axa w = bxb

Correctness Proof:  Induction
S → SS
S → aSb
S → bSa
S → ε



CFG for this Language?
• CFG for  

• Union of  and 

L = {aibjck | i = j or j = k}

L1 = {aibicj | i, j ≥ 0} L2 = {aibjcj | i, j ≥ 0}



Closure Properties of CFLs
• CFLs are closed under 


• Union


• Concatenation 


• Kleene star


• Important.   Not closer under complement and intersection!



Closure Properties of CFLs



Closure Properties of CFLs



Closure Properties of CFLs



Automata for CFGs
• Regular Languages :  Finite Automata 


• Context-free languages:   ??



Pushdown Automata
• Basically an NFA with a stack (pushdown store)


• The stack can consist of unlimited number symbols but can only be 
read and altered at the top:


• Can only pop symbol from top or push symbol to top 



Pushdown Automata Transitions
• Transitions of a PDA have two parts:


• State transition and stack manipulation (push/pop)


• If in state  reading input symbol  and  on the stack, replace  
with  on the stack and enter state  


•

•

• In state diagram arrow goes from  with label 

p a b b
c q

(p, a, b) → (q, c)

δ : Q × Σε × Γε → 𝒫(Q × Γε)

p → q a, b → c



Formal Definition:  PDA
• A pushdown automaton is a six tuple  where 


•  is the finite set of states


•  is a finite alphabet (the input symbols)


•  is a finite tape alphabet (the stack symbols)


•  is the transition function


•  is the initial state and  is the set of accept states

M = (Q, Σ, Γ, δ, q0F)

Q

Σ

Γ

δ : Q × Σε × Γε → 𝒫(Q × Γε)

q0 ∈ Q F ⊆ Q



Example PDA
• Consider the language over  of all strings made up of 

correctly nested brackets


• CFG for this language:  

• Now lets create a push-down automata for this language


• What to store on the stack?

Σ = {[, ]}

S → ε | [S] | SS



Example PDA for Balanced Brackets

Recall:  A transition of the form a, b → z 
means “if the current input symbol is a and 

the current stack symbol is b, then follow this 
transition, pop b, and push the string z”


