CSCI| 36| Lecture /:
Context-Free Grammars

Shikha Singh

Announcements & Logistics

HW 3 was due last night
HW 4 will be released today and due next Wed (Oct 1)
HW 2 graded feedback released
Let me know If you have any questions
Solutions to HW | and HW 2 are on GLOW
Hand in Exercise # 6 and pick up Exercise # 7

Reminder: Midterm | in-class on Oct /

Everything up to HW 4 included

Practice Midterm will be released Oct |

Question. Can you view the course calendar on the webpage!

L ast [Ime

Pumping lemma to prove languages are not regular

More practice with recognizing non-regular languages and proving non-
regularity

loday

New model of computation that is slightly more powerful

Context-free languages

Last [ime: Use Pumping Lemma

Problem I. Prove that the language L = {a'b' | i € N} is not regular;
Problem 2. Prove that L = {ww® | w € {0,1}*} is not regular
Problem 3. Is the language L = {(ab)' o (ab)' | i > 0} regular?

Problem 4. Prove that

L={w | we{0,1}* and the number of |sin w is not equal to the number of Os in w}

s not regular.

Solutions : Use Pumping Lemma

Problem |. Prove that the language L = {a'b' | i € N} is not regular.
Problem 2. Prove that L = {ww® | w € {0,1}*} is not regular.
Problem | and 2 solutions in the textbook.

Problem 3. Is the language L = {(ab)' o (ab)' | i > 0} regular?

Yes! Can draw a DFA or regular expression (abab)*

Problem 4. Prove L = {w | w € {0,1}*w has unequal number of Os and |s}

s not regular.

Suppose L is regular, then L should be regular (closed under intersection). But,

L = {w € {0,1}*|w has equal number of Os and Is}. We proved L is not regularl

Finite Automata Limitations

-+ Code snippets that can only store finitely many states

(Theory vs PL) Remember that all models of computation we discuss

map directly to programming constructs

CoNTAINS11(w[1..n]):

found « FALSE MurtiPLEOF5(w[1..n]):
fori«<—1ton rem «— 0
ifi=1 fori < 1ton
else fastz = wi1] rem < (2-rem+w[i]) mod 5
last2 «—w[i—1] - w[i] ifrem=20
if last2 = 11 return TRUE
found < TRUE else

return found return FALSE

Finite Automata Applications

- Lexical analysis and parsing in compilers and programming in general
+ Networking protocols and routing
» Clircurt design and event-driven programming

» Synchronization of distributed devices

All Languages

Recursively-Enumerable Languages
Recognized by Turing Machines

Decidable Languages

Decidable by Turing Machine
0"1m2"

Context-free Languages

Push-down Automaton
o1, wwh

Regular Languages

We are here

Finite Automaton
1*0*, (0 U 1)*0

All Languages

Recursively-Enumerable Languages
Recognized by Turing Machines

Decidable Languages

Decidable by Turing Machine
01’111’121’1

Today Context-free Languages

Push-down Automaton
0”1, wwh

Regular Languages

Finite Automaton
1*0*, (0 U 1)*0

Context-Free Grammar

- Generative model to specify the next class of languages

» First used In the study of natural/human languages

» Applications in specification & compilation of programming languages
- Syntax of a PL can be specified using its grammar

+ Compller to check correct syntax uses a parser to check

against valid rules

Example CFG

» CFGs consists of a collection of substritution rules, called productions
Left-hand side of a rule has a single variable (or non-terminal)
Right-hand side can consist of variables and terminals

- Conventions: upper-case letters for variables/non-terminals, lower-

case letters for terminals,

- § for start variable, usually on the LHS of the topmost rule

Fxample: § =051

S - ¢

Derivations to Generarte Strings

A sequence of substitutions starting with the start variable and

ending In a string of terminals Is a derivation

» For example, the derivation of 000111 using the grammar
S—>0S51

S — ¢

- S = 051 = 00511 = 000S111 = 000111

- (Can you guess the language of this grammar?
- L={0"1"| n >0}

» Thus, CFGs are more powerful than Regbxp/DFA/NFAS

[anguage of a Grammar

- The set of all strings that can be generated using the rules of a

srammar constitute the language of the grammar

 Any language that can be generated by some context-free grammar

s called a context-free language

Parse |rees

- Rooted trees that represent a derivation
- Root: start variable, leaves: derived string
- Children of nodes represent the rule that is being applied

+ Will be useful in discussing context-free languages

A—->0A1
A—-B
B — #

- ——n—n—n

Formal Definition: CFG

A context-free grammar G is a quadruple (V, 2, R, §) where
- Vs afinite set called variables

+ 2 Is a finite set (disjoint from V) called the terminals

+ R is afinite subset of V X (V U 2)* called rules, and

» S (the start symbols) is a element of V

» ForanyAeVandue (VUuX)* wewrite A - uif(A,u) € R

[anguage of a Grammar

- fv,w,yve (VUX*)and A — w s a rule, then we say uAv yields

uwyv and write uAv = uwy

*

- We say u derives v denoted u = v, If there exists a sequence
Uy, ..., U such that
U — Uy — U — V

- The language of the grammar G is L(G) = {w | § = w}

Grammar for English

A grammar for the English language tells us whether a sentence is "well

formed". For example:

<Sentence> — <NounPhrase><VerbPhrase>
<NounPhrase> — <Article><NounUnit>
<NounUnit> = <Noun> | <Adjective><NounUnit>
<VerbPhrase> = <Verb> <NounPhrase>

<Article> = a | the

<Adjective> — big | small | black | green | colorless
<Noun> — dog | cat | mouse | bug | Ideas
<Verb> — |oves | chases | eats | sleeps

Some generated sentences:

The black dog loves the small cat

A cat chases a mouse

The colorless bug chases the green ideas

-xample: Programming Language Syntax

<program> — <block>

<block> = { <command-list> }

<command-list> = &

<command-list> = <command> <command-list>
<command> — <block>

<command> — <assignment>

<command> — <one-armed-conditional>
<command> — <two-armed-conditional>
<command> — <while-loop>

<assignment> — <var> := <expr>
<one-armed-conditional> — if <expr> <command>
<two-armed-conditional> — if <expr> <command> else <command>
<while-loop> — while <expr> <command>

Possible generated program

{x:=4
while x >1
X =x-1}

Parsing

- A compller for a programming language takes an input program In

the language and converts it to a form more suitable for execution

- Jo do so, the compiler creates a parse tree of the code to be

compiled using its CFG: this process is called parsing

Regular Languages are Context-Free

» Every regular language can be described by some CFG

+ Takeaway: CFGs are more "expressive” In power than regular

expressions

Regular Languages are Context-Free

- Let M = (0, 2,0, qy, F) be a DFA for the regular language L
» We can construct a CFG G for L as follows
» Make a variable Q; for each state g; € QO

- Foreach g;,q; € Q and a € X such that 6(g;, a) = g; a rule
O, —a Q;addarule Q; = a O

+ Make @, the start variable

. AddQ;, > ¢ifg, € F

Regular Languages are Context-Free

- Proof of correctness: L(M) = L(G)

+ Suppose M accepts w, then there exists a sequence of states

do- 491> - - -» 4, that M enters when reading wy, ...,w, stq, € F

» There exists derivation Qy — wQ; — - = w,0,InG
and since g, € F,we have the rule Q, — ¢ ,thus w € L(G)

- [he other direction is analogous

Regular Languages are Context-Free

« Direct translation?

Regular Languages are Context-Free

+ S = aQ,|bR, | €
+ Q) = a0 | b0,
© Q) = aQ;| b0,
+ R, = DR, |aR,
+ R, = DR, |aR,

» (Can create an easier CFG by

breaking down into small pieces

Regular Languages are Context-Free

» Union of strings that start and end in a, start and end in b,and &

- S—> A|B]le¢

- A - aTa

- B —> bTh

« More inturtive!

» T — aT'|bT'| e (generates X*)

Regular Grammars

- A CFG is regular if any occurrence of a variable on the RHS of a

rule 1s as the rightmost symbol

- |t a CFG is regular, there is a DFA that recognizes the same language
- O =VU{f} (A state for each variable plus an accept state)

- Rule A — aB becomes 6(A,a) = B

» Ifthereisa A —- athen 6(A,a) =f

Exercise: Practice with CFGs

Describe a CFG for the following languages
- L={we{a,b}* | |w]| iseven }
« L={we {0,1}* | w=w"}

- L={we {a,b}* | whasthe same # of a's and b's}

Solutions of CFGs

- L={we{ab}* | |w]| iseven }
S— al' | bT | €
T — aS|bS

- L={we{ab)*|w=wl)
S—>aSa |bSb|al|b]|e
- L={w e {a,b}* | whasthe same # of a's and b's}

S — S5
S — aSbh
S — bSa

S - ¢

Correctness Proof: Induction

To prove: L(G) = {w | w has an equal # of a's and b's} 5— 55
S — aSb
(=>) Consider any w € L(G) and induct on the length k
o S — bSa
of derivation of w
S — ¢

(a) k =1then § = € and e has equal # of a's and b's
(b) k > 1 then either § = §S ;" Xy

or§ = aSh => axb

or§ = bSa =*> aya

In each case, § derives x, y in less than k steps and by IH, they must

have equal number of a's and b's

Correctness Proof: Induction

To prove: L(G) = {w | w has an equal # of a's and b's} 5 — 53
| | S — aSb
(<) Consider any w with equal # of a's and b's
S — bSa
Can show w € L(G) by induction on |w| S ¢

(@) |[w|=0thenw =¢

(b) |w| =k+2 (as |w| must be even)

Can divide by 4 cases depending on first and last symbol of w, In

each case show that the smaller string can be derived by IH
Case (i) and (i) w = axb or w = bxa

Case (iii) and (iv) w = axa and w = bxb

CFG for this Language!?

+ CFGfor L= {a'b/c*|i=jorj=k)
+ Union of L; = {a'b'c’|i,j > 0} and L, = {a'b’c’ | i,j > 0}

Closure Properties of CFLs

« CFLs are closed under

- Union
- Concatenation
« Kleene star

+ Important. Not closer under complement and intersection!

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

NB: Assume that V; — 21, Vo — 229 are disjoint.

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

Concatenation: L(G;)L(G,) is generated by
RiU Ry U {S — 3152}

NB: Assume that V; — 21, Vo — 229 are disjoint.

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

Concatenation: L(G;)L(G,) is generated by
RiU Ry U {S — 3152}

Kleene x: L(G1)* is generated by
Rl U {S — 6‘3 — Sls}

Automata for CFGs

- Regular Languages : Finite Automata

- Context-free languages: !

Pushdown Automata

Basically an NFA with a stack (pushdown store)

- The stack can consist of unlimited number symbols but can only be

read and altered at the top:

- Can only pop symbol from top or push symbol to top

Input la|b|b | a|bl|a

reading head ____________,

(L to R only,
one symbol at a F.C. /

time, or stays put)

Stack

pushdown store head
can push (add symbols)
or pop (remove and

S S OIS

check symbols)

Pushdown Automata lransitions

» Transitions of a PDA have two parts:
- State transition and stack manipulation (push/pop)

» If in state p reading input symbol a and b on the stack, replace b

with ¢ on the stack and enter state g

* (p,a,b) = (q,c¢)
« 0:0OX2Z XI', > LPOXT),)

» In state diagram arrow goes from p — g with label a, b — ¢

Formal Definition: PDA

» A pushdown automaton is a six tuple M = (Q, 2,1, 9, gof') where
+ (O Is the finite set of states

-+ 2 Is a finite alphabet (the input symbols)

- 1" is a finite tape alphabet (the stack symbols)

+ 0:0X2Z XI', = PO XT),) is the transition function

* o € Q isthe initial state and F C Q is the set of accept states

Example PDA

- Consider the language over X = {[,]} of all strings made up of

correctly nested brackets
- CFG for this language: S — € | [S] | S

- Now lets create a push-down automata for this language

- What to store on the stack?

Exam

ble PDA for Balancec

Recall: A transition of the form a, b = z
means "If the current input symbol Is a and
the current stack symbol is b, then follow this
transition, pop b, and push the string z”

Brackets

