CSCI 361 Lecture 6: Pumping Lemma

Shikha Singh

Announcements & Logistics

- HW 3 is due tomorrow at 10 pm on Gradescope
- Hand in Exercise #5, pick up Exercise #6
- Reminder: In class midterm I on Oct 7
- Looking ahead:
 - HW 4 will be released Thursday/ due Wed Oct 1
 - All content up to HW 4 is on the midterm
 - Practice midterm will be released Wed Oct I
 - Use lecture time on Oct 2 will be review + practice problems

Last Time

- Discussed Myhill Nerode theorem
 - Max fooling set size of L=# equivalence classes of \equiv_L
 - = min states of DFA for L
- Practice using it to prove some languages are not regular
 - $\{a^nb^n | n \in \mathbb{N}\}$
 - $\{ww \mid w \in \{0,1\}^*\}$
 - $\{a^n \mid n \in \mathbb{N} \text{ and } n \text{ is a power of 2}\}$
 - $\{w \in \{0,1\}^* \text{ has an equal number of } 0\text{s and } 1\text{s}\}$

Solution Sketches

- $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular
 - $F = \{a^i | i \in \mathbb{N}\}$ is an infinite fooling set since for any pair $a^i, a^j \in F$ such that $i \neq j$, suffix $z = b^i$ is such that $az \in L$ and $bz \notin L$
- $L = \{a^n \mid n \in \mathbb{N} \text{ and } n \text{ is a power of 2} \}$ is not regular
 - $F = \{a^{2^i} \mid i \in \mathbb{N}\}$ is an infinite fooling set
- $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular
 - $F = \{0^i 1 \mid i \in \mathbb{N}\}$ is an infinite fooling set

Two key properties: (a) infinite and (b) pairwise distinguishable

Review of Closure Properties

- Can often use closure properties to argue non-regularity
- $L = \{w \in \{0,1\}^* \text{ has an equal number of } 0\text{s and } 1\text{s}\}$ is not regular
- We know $L' = \{0^n 1^n \mid n \in \mathbb{N}_0\}$ is not regular (proved in class)
- Suppose L is regular, then since regular languages are closed under concatenation, we know $L\cap 0^*1^*$ must be regular
- But $L' = L \cap 0*1*$ which is a contradiction

Today: Pumping Lemma

- A necessary (but not sufficient) condition for regular languages
- Weaker guarantee but will generalize to the next class of languages

Pumping Lemma: Intuition

- If DFA M has p states then M visits a state more than once on any string with length at least p
 - Number of states visited = length of string + 1
- Let w = xyz be the string that is accepted such that y is component in between the first repeated state (q_i)
 - Then xy^iz should also be accepted (can "pump" the middle piece repeatedly)

- Consider DFA M for L. Let p be the number of states in M
- Let s be a string of length $n \ge p$
- Then M's computation sequences enters n+1 states on s
- By pigeonhole principle, there must be a repeated state q_j in the first p+1 states of this sequence
- Let x be the substring that brings M from q_0 to first occurrence of q_j

Formal Statement

Pumping Lemma. If L is a regular language, then there exists a number p where if $w \in L$ is any string of length at least p, then w may be divided into three pieces w = xyz such that:

- |y| > 0
- 2. $|xy| \le p$ (y must appear amongst the first p symbols)
- 3. for each $i \ge 0$, $xy^i z \in L$

Formal Statement

Pumping Lemma. If L is a regular language, then there exists a number p such that for all $w \in L$ of length at least p, then there exists a way to divide w into three pieces w = xyz such that:

- |y| > 0
- 2. $|xy| \le p$ (y must appear amongst the first p symbols)
- 3. for each $i \ge 0$, $xy^i z \in L$

Equivalent Statement for Proofs

Pumping Lemma. If for all pumping lengths p there exists a string $w \in L$ of length at least p, such that for all possible ways to divide w into three pieces w = xyz such that

(1) |y| > 0 and (2) $|xy| \le p$ hold, it is possible to find an $i \ge 0$

for which (3) fails, i.e., $xy^iz \notin L$

then L cannot be regular.

Pumping Lemma: Game View

- ullet Defender defends the claim that L satisfies pumping lemma
- ${f \cdot}$ Challenger challenges that claim and wants to show L does not satisfy pumping lemma

Defender

Pick pumping length p

Divide S into xyzs.t. |y| > 0 and $|xy| \le p$

Challenger

$$\begin{array}{l} \stackrel{p}{\longrightarrow} \\ \stackrel{z}{\longleftarrow} & \text{Pick } S \in L \text{ s.t. } |S| \ge p \\ \\ \stackrel{i}{\longrightarrow} & \\ \stackrel{i}{\longleftarrow} & \text{Pick } i, \text{ such that } xy^iz \not\in L \end{array}$$

Pumping Lemma: Game View

- \cdot If L is regular: defender has a winning strategy, challenger gets stuck
- ${f \cdot}$ If challenger has a winning strategy, L cannot be regular

Defender

Pick pumping length p

Divide S into xyzs.t. |y| > 0 and $|xy| \le p$

Challenger

$$\begin{array}{l} \stackrel{p}{\longrightarrow} \\ \stackrel{z}{\longleftarrow} & \text{Pick } S \in L \text{ s.t. } |S| \geq p \\ \\ \stackrel{x, y, z}{\longrightarrow} \\ \stackrel{i}{\longleftarrow} & \text{Pick } i, \text{ such that } xy^iz \not\in L \end{array}$$

Questions

- Do all regular languages satisfy the pumping lemma?
- If a language satisfies the pumping lemma, does that mean it is regular?

Proof. Let DFA M for L have p states. Let $w = w_1 \cdots w_n$ such that $n \ge p$ and q_0, q_1, \ldots, q_n be the states entered by M on w.

Proof. Let DFA M for L have p states. Let $w = w_1 \cdots w_n$ such that $n \ge p$ and q_0, q_1, \ldots, q_n be the states entered by M on w. M must revisit a state in the first p symbols. Let q_i and q_k be the first and second occurrence of this state.

Let $x = w_1 w_2 \cdots w_{j-1}$, $y = w_j w_{j+1} \cdots w_k$ and $z = w_{k+1} \cdots w_n$ which satisfies the conditions (1) and (2). Condition (3) follows from the fact that the strings xy^i are all **indistinguishable** wrt M.

Proof. Let DFA M for L have p states. Let $w = w_1 \cdots w_n$ such that $n \ge p$ and q_0, q_1, \ldots, q_n be the states entered by M on w. M must revisit a state in the first p symbols. Let q_j and q_k be the first and second occurrence of this state.

Proof. Let DFA M for L have p states. Let $w = w_1 \cdots w_n$ such that $n \ge p$ and q_0, q_1, \ldots, q_n be the states entered by M on w. M must revisit a state in the first p symbols. Let q_i and q_k be the first and second occurrence of this state.

Let $x = w_1 w_2 \cdots w_{j-1}$, $y = w_j w_{j+1} \cdots w_k$ and $z = w_{k+1} \cdots w_n$ which satisfies the conditions (1) and (2). Condition (3) follows from the fact that the strings xy^i are all **indistinguishable** wrt M.

PUIP ALL TIES TRICES

Using Pumping Lemma Example

Problem 1. Prove that the language $L = \{0^n 1^{m+n} 1^n \mid m, n \ge 0\}$ is not regular using the pumping lemma.

Proof. Assume that L is regular. Let p be the pumping length.

Consider the string $w = 0^p 1^{2p} 0^p$. Then $w \in L$ and $|w| \ge p$.

Any way to divide w such that $|xy| \le p$ and |y| > 0 means $y = 0^j$ for some $j \ge 1$, that is,

$$x = 0^i$$
, $y = 0^j$ and $z = 0^{p-(i+j)}1^{2p}0^p$ where $i \ge 0, j \ge 1$

But then, $xz = 0^{p-j}1^{2p}0^p \notin L$ which is a contradiction $\Rightarrow \Leftarrow$

Review PL Steps

- Proving L is not regular using pumping lemma
 - Assume L is regular, let p be the pumping lemma given by lemma
 - Consider a specific string $w \in L$ of length at least p such that
 - for every possible partition of w into x, y, z satisfying
 - $|xp| \le p$ and |y| > 0
 - there exists an i such that $xy^iz \notin L$
- ullet The above steps provide a contradiction to L being regular by PL
- HW 4 Problem 5
 - Show that a language is not regular and show that it satisfies conditions of the pumping lemma

In Class Practice: Use Pumping Lemma

Problem 1. Prove that the language $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular.

Problem 2. Prove that $L = \{ww^R \mid w \in \{0,1\}^*\}$ is not regular.

Problem 3. Is the language $L = \{(ab)^i \circ (ab)^i \mid i \geq 0\}$ regular?

Problem 4. Prove that

 $L = \{w \mid w \in \{0,1\}^* \text{ and the number of Is in } w \text{ is not equal to the number of 0s in } w\}$ is not regular.

Finite Automata Applications

- Lexical analysis in compilers
- Networking protocols and routing
- Circuit design and event-driven programming
- Synchronization of distributed devices

Finite Automata Limitation

- Code snippets that can only store finitely many states
- (Theory vs PL) Remember that all models of computation we discuss map directly to programming constructs

