CSCI 361 Lecture 5: Proving Non-Regularity

Shikha Singh

Announcements & Logistics

- HW 3 will be released this afternoon, due Wed 24 at 10 pm
- Hand in Exercise #4, pick up Exercise #5
- Colloquium tomorrow: 2:35pm in Wege
 - Data driven algorithms for online decision making (Roie Levin, Rutgers)

Not All Languages Are Regular

- Last time: all finite languages are regular.
- Today: Characterizing what type of infinite languages are regular?
- Intuitively, DFAs can only remember finitely many things
- Use the property that DFA cannot distinguish between two different strings that brings it to the same state
- Today: ways to prove a language is not regular
 - Myhill Nerode (not in the book)
 - Pumping lemma (Ch 1.4 in the book)
 - Closure properties and known non-regular languages

Indistinguishability (DFA)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let x, y be any string over Σ .

Definition. x indistinguishable to y with respect to a DFA M, denoted $x \sim_M y$ if and only if $\delta^*(q_0, x) = \delta^*(q_0, y)$ (i.e., the state reached by M on x is the same as the state reached by M on y)

Corollary. If $x \sim_M y$ then for all $z \in \Sigma^*$, then $xz \in L(M) \iff yz \in L(M)$

Class Exercise

- Example. $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$
- **Definition.** x indistinguishable to y with respect to a DFA M, denoted $x \sim_M y$ if and only if $\delta^*(q_0, x) = \delta^*(q_0, y)$ (i.e., the state reached by M on x is the same as the state reached by M on y)
- Question: for each state in the DFA for L, write a regular expression characterizing all strings that bring the DFA to that state.

Solution

- State s : ε
- State q_1 : all strings that start with a and end with a: $a\Sigma^*a$
- State q_2 : all strings that start with a and end with b: $a\Sigma^*b$
- State r_1 : all strings that start with b and end with b: $b\Sigma^*b$
- State r_2 : all strings that start with b and end with a: $b\Sigma^*a$

Understanding the Partitions

- These five classes partition Σ^* : ε , $a\Sigma^*a$, $a\Sigma^*b$, $b\Sigma^*b$, $b\Sigma^*a$
- All strings in Σ^* is in exactly one of the these classes
- Union of these classes covers Σ^*
- Intuitively, to decide this language, we only must be able to distinguish between exactly these five cases

Indistinguishability (Languages)

Let L be any language over an alphabet Σ .

Definition. x indistinguishable to y with respect to L, denoted $x \equiv_L y$ if and only if for all $z \in \Sigma^*$, we have that $xz \in L \iff yz \in L$

Observation: \equiv_L is an equivalence relation over Σ^*

Thus, \equiv_L partitions Σ^* into equivalence classes.

Distinguishing Suffixes

- Every string in the same equivalence class [x] of \equiv_L are indistinguishable with each other
- Two strings $x,y \in \Sigma^*$ are in different equivalence iff they are distinguishable
 - Can find a suffix $z \in \Sigma^*$ that distinguishes them, that is, $xz \in L$ and $yz \notin L$ or $xz \notin L$ and $yz \in L$
- Question. Suppose $x \in L$ and $y \notin L$, are they distinguishable?

Indistinguishability (Languages)

Example.

 $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$

• **Problem.** Find the equivalence classes of the relation \equiv_{L}

Indistinguishability (Languages)

- Example. $L = \{w \in \{0,1\}^* \mid w \text{ ends in } 01\}$
- **Problem.** Find the equivalence classes of the relation \equiv_{L}
- Hint: try to construct a minimal DFA for L and find the classes of strings that map to each state

Indistinguishability DFA vs Languages

- Observation. If $x \sim_M y$, then $x \equiv_{L(M)} y$.
- Claim. If a language L over Σ has k equivalence classes defined by \equiv_L , then any DFA for L must have at least k states.
- How can we prove this?

Minimal DFA

• Corollary. If a DFA M for L has number of states equal to the number of equivalence classes of \equiv_L then such a DFA is minimal.

Myhill-Nerode Theorem

Let L be a language over Σ^* , then L is regular **if and only if** the relation \equiv_L over Σ^* has a finite number of equivalence classes.

Myhill-Nerode Theorem

Let L be a language over Σ^* , then L is regular **if and only if** the relation \equiv_L over Σ^* has a finite number of equivalence classes.

Necessary condition. For L to be regular, it must have finitely many equivalence classes. Equivalently, if \equiv_L over Σ^* has an infinite number of equivalence classes, then L cannot be regular.

Sufficient condition. If \equiv_L has finitely many equivalence classes, then L must be regular. (HW 3 question proves this direction.)

Proving Non Regularity

- Myhill-Nerode theorem says that any language that has infinitely many equivalence classes with respect to \equiv_L is not regular
- Typically, we don't need to find all of equivalence classes
- Sufficient to find an infinite subset of strings that are mutually distinguishable

Fooling Sets

Definition. A set of strings $S \subseteq \Sigma^*$ is a **fooling set** with respect to a language $L \subseteq \Sigma^*$ if every pair of strings in S is distinguishable with respect to each other.

Example. $L = \{w \in \{a,b\}^* \mid w \text{ starts and ends with the same symbol}\}$ An example fooling set for L?

Question. Can the size of a fooling set be bigger than the number of equivalence classes?

- Max size of a fooling set for L=# of equivalence class of \equiv_L
- Size of any fooling set for $L \leq \#$ of equivalence class of \equiv_L

Myhill-Nerode Theorem

Maximum fooling set size of L

= # equivalence classes of \equiv_L

= minimum states of DFA for L

Takeaway. If we could prove that there exists an infinite number of distinguishable sets for a language, it would mean that even the smallest DFA for the language would require an infinite number of states. Therefore, no such DFA exists and the language cannot be regular.

Proving Non-Regularity

Problem. Prove that the language $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular.

Hint. Identify and prove that L has an infinite fooling set.

Exercises: Proving Non-Regularity

Problem 1. Prove that the language

 $L = \{a^n \mid n \in \mathbb{N} \text{ and } n \text{ is a power of 2} \}$ is not regular.

Hint. Identify and prove that L has an infinite fooling set.

Problem 2. Prove that the language $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Hint. Identify and prove that L has an infinite fooling set.

Problem 3. Prove that the language

 $L = \{w \in \{0,1\}^* \text{ has an equal number of } 0\text{s and } 1\text{s}\} \text{ is not regular.}$

Hint. Use the fact that $L = \{0^i 1^i \mid i \in \mathbb{N}\}$ is not regular and closure properties of regular languages.

Takeaways: Myhill Nerode

- Powerful characterization of regular languages
- Both upper and lower bound on number of states needed:
 - Can be used to prove that a DFA is minimal
 - Can be used to prove that no DFA exists for a language
- This method does not extend beyond regular languages
- Next method (pumping lemma) is weaker but generalizes to the next class of problems we will study

Pumping Lemma: Intuition

- If DFA M has p states then M visits a state more than once on any string with length at least p
 - Number of states visited = length of string + 1
- Let w = xyz be the string that is accepted such that y is component in between the first repeated state (q_i)
 - Then xy^iz should also be accepted (can "pump" the middle piece repeatedly)

Pumping Lemma: Proof

- Consider DFA M for L. Let p be the number of states in M
- Let s be a string of length $n \ge p$
- Then M's computation sequences enters n+1 states on s
- By pigeonhole principle, there must be a repeated state q_j in the first p+1 states of this sequence
- Let x be the substring that brings M from q_0 to first occurrence of q_j

Formal Statement

Pumping Lemma. If L is a regular language, then there exists a number p where if $w \in L$ is any string of length at least p, then w may be divided into three pieces w = xyz such that:

- |y| > 0
- 2. $|xy| \le p$ (y must appear amongst the first p symbols)
- 3. for each $i \ge 0$, $xy^i z \in L$

Pumping Lemma: Game View

- Defender claims L satisfies pumping lemma
- ullet Challenger claims L does not satisfy pumping lemma

Defender

Pick pumping length p

Divide S into xyzs.t. |y| > 0 and $|xy| \le p$

Challenger

$$\begin{array}{l} \stackrel{p}{\longrightarrow} \\ \stackrel{z}{\longleftarrow} & \text{Pick } S \in L \text{ s.t. } |S| \ge p \\ x, y, z \\ \stackrel{i}{\longrightarrow} & \text{Pick } i, \text{ such that } xy^iz \not\in L \end{array}$$

Pumping Lemma: Game View

- If L is regular: defender has a winning strategy, challenger gets stuck
- ${f \cdot}$ If challenger has a winning strategy, L cannot be regular

Defender

Pick pumping length p

Divide S into xyzs.t. |y| > 0 and $|xy| \le p$

Challenger

$$\begin{array}{l}
\stackrel{p}{\longrightarrow} \\
\stackrel{z}{\longleftarrow} \quad \text{Pick } S \in L \text{ s.t. } |S| \ge p \\
\xrightarrow{x, y, z} \\
\stackrel{i}{\longrightarrow} \quad \text{Pick } i, \text{ such that } xy^iz \not\in L
\end{array}$$

Questions

- Do all regular languages satisfy the pumping lemma?
- If a language satisfies the pumping lemma, does that mean it is regular?

Pumping Lemma Proof

Proof. Let DFA M for L have p states. Let $w = w_1 \cdots w_n$ such that $n \ge p$ and q_0, q_1, \ldots, q_n be the states entered by M on w. M must revisit a state in the first p symbols. Let q_i and q_k be the first and second occurrence of this state.

Let $x = w_1 w_2 \cdots w_{j-1}$, $y = w_j w_{j+1} \cdots w_k$ and $z = w_{k+1} \cdots w_n$ which satisfies the conditions (1) and (2). Condition (3) follows from the fact that the strings xy^i are all **indistinguishable** wrt M.

PUIP ALL TIES TRICES

Practice: Using Pumping Lemma

Problem 1. Prove that the language $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular using the pumping lemma.

Problem 2. Prove that $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

Problem 3. Is the language $L = \{(ab)^i \circ (ab)^i \mid i \geq 0\}$ regular?

Problem 4. Prove that

 $L = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ has equal number of Is and 0s} \}$ is not regular using pumping lemma.