
CSCI 361 Lecture 5:  
Proving Non-Regularity
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Announcements & Logistics
• HW 3 will be released this afternoon, due Wed 24 at 10 pm

• Hand in Exercise #4,  pick up Exercise #5


• Colloquium tomorrow:  2:35pm in Wege 

• Data driven algorithms for online decision making (Roie Levin, Rutgers)



Not All Languages Are Regular
• Last time:   all finite languages are regular.

• Today:  Characterizing what type of infinite languages are regular?

• Intuitively, DFAs can only remember finitely many things 

• Use the property that DFA cannot distinguish between two different 

strings that brings it to the same state

• Today:   ways to prove a language is not regular


• Myhill Nerode (not in the book)

• Pumping lemma (Ch 1.4 in the book)

• Closure properties and known non-regular languages 



Indistinguishability (DFA)
Let  be a DFA.   Let  be any string over .


Definition.    indistinguishable to  with respect to a DFA , 
denoted  if and only if   (i.e., the state 
reached by  on  is the same as the state reached by  on )


Corollary.  If  then for all , then  
  

M = (Q, Σ, δ, q0, F) x, y Σ

x y M
x ∼M y δ*(q0, x) = δ*(q0, y)

M x M y

x ∼M y z ∈ Σ*
xz ∈ L(M) ⟺ yz ∈ L(M)



Class Exercise
• Example. 

• Definition.    indistinguishable to  with respect to a DFA , denoted 
 if and only if   (i.e., the state reached by  on  is 

the same as the state reached by  on )


• Question:   for each state in the DFA for , write a regular expression 
characterizing all strings that bring the DFA to that state.


L = {w ∈ {a, b}* | w starts and ends with the same symbol}

x y M
x ∼M y δ*(q0, x) = δ*(q0, y) M x

M y

L



Solution
• State s   

• State :  all strings that start with  and end with :    

• State :  all strings that start with  and end with :    

• State :  all strings that start with  and end with :     

• State :  all strings that start with  and end with :     

: ε

q1 a a aΣ*a

q2 a b aΣ*b

r1 b b bΣ*b

r2 b a bΣ*a



Understanding the Partitions 
• These five classes partition   :  , ,  , , 

• All strings in  is in exactly one of the these classes


• Union of these classes covers 

• Intuitively, to decide this language, we only must be able to distinguish between 
exactly these five cases


Σ* ε aΣ*a aΣ*b bΣ*b bΣ*a

Σ*

Σ*



Indistinguishability (Languages)
Let  be any language over an alphabet .


Definition.    indistinguishable to  with respect to , denoted 
 if and only if for all ,  we have that   

Observation:   is an equivalence relation over 

Thus,  partitions  into equivalence classes.

L Σ

x y L
x ≡L y z ∈ Σ* xz ∈ L ⟺ yz ∈ L

≡L Σ*

≡L Σ*



Distinguishing Suffixes
• Every string in the same equivalence class  of  are 

indistinguishable with each other


• Two strings  are in different equivalence iff they are 
distinguishable


• Can find a suffix   that distinguishes them, that is,  
and   or  and 

• Question.  Suppose  and , are they distinguishable?

[x] ≡L

x, y ∈ Σ*

z ∈ Σ* xz ∈ L
yz ∉ L xz ∉ L yz ∈ L

x ∈ L y ∉ L



Indistinguishability (Languages)
• Example.  

• Problem.  Find the equivalence classes of the relation .


L = {w ∈ {a, b}* | w starts and ends with the same symbol}

≡L



Indistinguishability (Languages)
• Example.  

• Problem.  Find the equivalence classes of the relation .


• Hint:  try to construct a minimal DFA for  and find the classes of 
strings that map to each state


L = {w ∈ {0,1}* | w ends in 01}

≡L

L



Indistinguishability DFA vs Languages
• Observation.   If ,   then .


• Claim.   If a language  over  has  equivalence classes defined by
, then any DFA for  must have at least  states.


• How can we prove this?

x ∼M y x ≡L(M) y

L Σ k
≡L L k



Minimal DFA
• Corollary.   If a DFA  for  has number of states equal to the 

number of equivalence classes of  then such a DFA is minimal.

M L

≡L



Myhill-Nerode Theorem

Let  be a language over , then  is regular if and only if the 
relation  over  has a finite number of equivalence classes.

L Σ* L
≡L Σ*



Myhill-Nerode Theorem

Let  be a language over , then  is regular if and only if the 
relation  over  has a finite number of equivalence classes.

L Σ* L
≡L Σ*

Necessary condition.   For  to be regular, it must have finitely many 
equivalence classes.  Equivalently,  if  over  has an infinite number 
of equivalence classes, then  cannot be regular.


Sufficient condition.  If  has finitely many equivalence classes, then 
 must be regular.   (HW 3 question proves this direction.)

L
≡L Σ*

L

≡L

L



Proving Non Regularity
• Myhill-Nerode theorem says that any language that has infinitely 

many equivalence classes with respect to  is not regular


• Typically, we don't need to find all of equivalence classes


• Sufficient to find an infinite subset of strings that are mutually 
distinguishable  

≡L



Fooling Sets
Definition.  A set of strings  is a fooling set with respect to a 
language  if every pair of strings in  is distinguishable with 
respect to each other.


Example. 

An example fooling set for ?


Question.  Can the size of a fooling set be bigger than the number of 
equivalence classes?


• Max size of a fooling set for  = # of equivalence class of 

• Size of any fooling set for    # of equivalence class of 

S ⊆ Σ*
L ⊆ Σ* S

L = {w ∈ {a, b}* | w starts and ends with the same symbol}

L

L ≡L

L ≤ ≡L



Myhill-Nerode Theorem

Maximum fooling set size of   
 

 # equivalence classes of   
 

 minimum states of DFA for 

L

= ≡L

= L

Takeaway.  If we could prove that there exists an infinite number of 
distinguishable sets for a language, it would mean that even the smallest 
DFA for the language would require an infinite number of states.   
Therefore, no such DFA exists and the language cannot be regular.



Proving Non-Regularity 
Problem.  Prove that the language  is not regular.


Hint.  Identify and prove that  has an infinite fooling set.

L = {aibi | i ∈ ℕ}

L



Exercises: Proving Non-Regularity 
Problem 1.  Prove that the language 

 is not regular.


Hint.  Identify and prove that  has an infinite fooling set.


Problem 2.  Prove that the language  is not 
regular.


Hint.  Identify and prove that  has an infinite fooling set.


Problem 3.  Prove that the language 
 is not regular.


Hint.  Use the fact that   is not regular and closure 

properties of regular languages.

L = {an | n ∈ ℕ and n is a power of 2}

L

L = {ww | w ∈ {0,1}*}

L

L = {w ∈ {0,1}* has an equal number of 0s and1s}

L = {0i1i | i ∈ ℕ}



Takeaways:  Myhill Nerode
• Powerful characterization of regular languages


• Both upper and lower bound on number of states needed:


• Can be used to prove that a DFA is minimal 


• Can be used to prove that no DFA exists for a language


• This method does not extend beyond regular languages


• Next method (pumping lemma) is weaker but generalizes to the 
next class of problems we will study



• If DFA  has  states then  visits a state more than once on any 
string with length at least 

• Number of states visited = length of string 

• Let  be the string that is accepted such that  is component 
in between the first repeated state ( ) 


• Then  should also be accepted (can "pump" the middle 
piece repeatedly)

M p M
p

+ 1

w = xyz y
qj

xyiz

Pumping Lemma:  Intuition

x

y

z



• Consider DFA  for .  Let  be the number of states in 

• Let  be a string of length 

• Then 's computation sequences enters  states on 

• By pigeonhole principle, there must be a repeated state  in the first 
 states of this sequence


• Let  be the substring that brings  from  to first occurrence of 

M L p M

s n ≥ p

M n + 1 s

qj
p + 1

x M q0 qj

Pumping Lemma:  Proof

x

y

z



Pumping Lemma.   If  is a regular language, then there exists a 
number  where if  is any string of length at least , then  may 
be divided into three pieces  such that:


1.   


2.   (  must appear amongst the first  symbols)


3. for each ,     

L
p w ∈ L p w

w = xyz

|y | > 0

|xy | ≤ p y p

i ≥ 0 xyiz ∈ L

Formal Statement

x

y

z



• Defender claims  satisfies pumping lemma


• Challenger claims  does not satisfy pumping lemma

L

L

Pumping Lemma:  Game View

xyz
s |s |

s
|y | > 0 and  |xy | ≤ p

x, y, z

 such that xyiz ∉ L



• If  is regular :  defender has a winning strategy, challenger gets stuck


• If challenger has a winning strategy,   cannot be regular

L

L

Pumping Lemma:  Game View

xyz
s |s |

s
|y | > 0 and  |xy | ≤ p

x, y, z

 such that xyiz ∉ L



• Do all regular languages satisfy the pumping lemma?


• If a language satisfies the pumping lemma, does that mean it is 
regular?

Questions



Proof.  Let DFA  for  have  states.  Let  such that  and
 be the states entered by  on .    must revisit a state in the first 

 symbols. Let  and  be the first and second occurrence of this state. 


Let ,   and  which satisfies the 

conditions (1) and (2).  Condition (3) follows from the fact that the strings  are 
all indistinguishable wrt .

M L p w = w1⋯wn n ≥ p
q0, q1, …, qn M w M
p qj qk

x = w1w2⋯wj−1 y = wjwj+1⋯wk z = wk+1⋯wn

xyi

M

Pumping Lemma Proof

x

y

z



x

y

z



Problem 1.  Prove that the language  is not regular 
using the pumping lemma.


Problem 2.  Prove that   is not regular.


Problem 3.  Is the language  regular?


Problem 4.  Prove that  
 is not 

regular using pumping lemma.


L = {aibi | i ∈ ℕ}

L = {ww | w ∈ {0,1}*}

L = {(ab)i ∘ (ab)i | i ≥ 0}

L = {w | w ∈ {0,1}* and w has equal number of 1s and 0s}

Practice:  Using Pumping Lemma


