CSCI 361 Lecture 4: Regular Expressions

Shikha Singh

Announcements & Logistics

- Assignment 2 due Sept 17 (tomorrow) at 10 pm
 - Please check LaTeX formatting
 - Please assign pages to each question on Gradescope
- Hand in Exercise #3, pick up Exercise #4
- Assignment I graded feedback will be released soon
- Reminder: Midterm I (Oct 7) and Midterm 2 (Nov 6)
- Questions?

Last Time

- Defined non-deterministic finite automata
 - Relaxed transition rules compared to DFAs
 - Equivalent in power
- Practice with NFAs
- Showed regular languages are closed under concatenation using NFAs

Today

- More closure: Kleene star operation
- Regular expressions and equivalence with DFAs/NFAs

Kleene Star

- Let A be a language on Σ
- Definition. Kleene star of A, denoted A^* is defined as:

$$A^* = \{w_1 w_2 \cdots w_k | k \ge 0 \text{ and each } w_i \in A\}$$

• **Example**. Suppose $L_1 = \{01,11\}$, what is L^* ?

Question. Are regular languages closed under Kleene star?

Kleene Star

• Theorem. The class of regular languages is closed under Kleene star.

Suppose this is the NFA for L. How to draw an NFA for L^* ?

Kleene Star

• Theorem. The class of regular languages is closed under Kleene star.

Do we need this new state? Why?

- Theorem. The class of languages are closed under Kleene star.
- Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be the NFA for L_1
- Construct NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize L_1^*
 - $Q = Q_1 \cup \{q_0\}$ (add a new start state)
 - $F = F_1 \cup \{q_0\}$

- Theorem. The class of languages are closed under Kleene star.
- Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be the NFA for L_1
- Construct NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize L_1^*
 - $Q = Q_1 \cup \{q_0\}$ (add a new start state)
 - $F = F_1 \cup \{q_0\}$

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 ext{ and } q
otin F_1 \ \delta_1(q,a) & q \in F_1 ext{ and } a
otin
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_2 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 ext{ and } a
otin F_3 \ \delta_1(q,a) & q \in F_3 \ \delta_1(q,a) & q
otin F_3 \ \delta_1(q$$

- Theorem. The class of languages are closed under Kleene star.
- Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be the NFA for L_1
- Construct NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize L_1^*
 - $Q = Q_1 \cup \{q_0\}$ (add a new start state)
 - $F = F_1 \cup \{q_0\}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \not\in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \end{cases}$$
 $\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \end{cases}$

- Theorem. The class of languages are closed under Kleene star.
- Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be the NFA for L_1
- Construct NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize L_1^*
 - $Q = Q_1 \cup \{q_0\}$ (add a new start state)
 - $F = F_1 \cup \{q_0\}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Regular Expressions

Regular Expressions

- A "generative" way to characterize regular languages: regular expressions
- Have many applications in programming languages
 - grep/ awk in UNIX
- Define regular expressions and give examples
- Show that regular expressions are equivalent to DFA/NFA

Revisit Formal Definition

A regular expression R over the alphabet Σ is defined inductively as follows. R is regular expression if

- (base cases). R is either a for some $a \in \Sigma$, or an empty string ε or an empty set \emptyset
- · (recursive cases using regular operators).

R is the union, concatenation or Kleene star of smaller regular expressions that is, $R=R_1\cup R_2$ or $R=R_1\circ R_2$ or $R=R_1^*$ where R_1,R_2 are regular expressions

- Let the language of a regular expression L(R) be the set of strings that can be generated by the regular expression
- Examples: 0*10*, $(01)* \cup (10)*$, $\Sigma\Sigma$, etc

Working with Regular Expressions

- If R is a regular expression then:
 - $R \cup \emptyset = ?$
 - $R \circ \varepsilon = ?$
- But the following may not hold:
 - $R \cup \varepsilon = ?R$
 - What is $R \circ \emptyset$?

Working with Regular Expressions

- If R is a regular expression then:
 - $R \cup \emptyset = R$
 - $R \circ \varepsilon = R$
- But the following may not hold:
 - $R \cup \varepsilon$ is not necessarily the same as R
 - $R \circ \emptyset = \emptyset$

Equivalence with Finite Automata

- Lemma (1.55 in Sipser). If a language is described by a regular expression, then is regular
- **Proof.** Let R is the regular expression, sufficient to create an NFA that recognizes L(R)
 - (base cases). It is easy to create an NFA for each of the base cases for ${\it R}$

Equivalence with Finite Automata

- Lemma (1.55 in Sipser). If a language is described by a regular expression, then is regular
- **Proof.** Let R is the regular expression, sufficient to create an NFA that recognizes L(R)
 - (recursive cases). Suppose by induction we have an NFA for any regular expression smaller than R, we can create an NFA for R using the union/concatenation/Kleene star of these NFA

NFAs to Regular Expression

Every NFA can be converted to an equivalent regular expression

Adjacent paths: concatenation

Converting a DFA to Regular Expression

• Lemma (1.60 in Sipser). If a language is regular (recognized by a DFA), then it can be described by some regular expression.

Proof outline.

- Convert the DFA into a GNFA (generalized NFA) with $k \geq 2$ states (NFA where transitions occur on regular expressions)
- Eliminate states of the GNFA one by one until two states left
- Output the regular expression from the start to accept state

Generalized NFA

- A GNFA is a generalized NFA with the following conditions:
 - Transitions are on regular expressions (not just symbols or arepsilon)
 - Start state has an arrow to every other state and not arrows coming in from any state
 - Only one accept state that has arrows coming in from every other state and no arrows leaving it
 - Every other state has arrows to every other state including itself

$DFA \Longrightarrow GNFA \Longrightarrow RegularExp$

- Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA, we can convert it to a regular expression as follows
- GNFA G: add a new start state q_s and accept state q_f to M
 - If there is an arrow missing from q_s to a state $q \in Q$, add an arrow labelled with \varnothing
 - Add arepsilon arrows from F to q_f
- For any pair of states (p,q) that are neither start or accept states of M, add additional \varnothing arrows to create a valid GNFA
- Now perform the state-elimination algorithm described next to convert G with k states to G with k-1 states

State Elimination Algorithm

- Consider a GNFA with k>2 states and let $q_{\rm rip}$ be a state that is neither the start or accept state
- Reduce: create a GNFA with k-1 states by removing $q_{\rm rip}$; replace all paths that go through it with an equivalent regular expression

Final Regular Expression

- Perform the state elimination algorithm until there are k=2 states (start and accept) states left
- Output the regular expression on the only remaining transition
- Correctness: by induction on the number of states of GNFA

$DFA \Longrightarrow GNFA \Longrightarrow RegularExp$

- Why does this reduction work?
- Claim. Consider a GNFA G with k states, let G' be GNFA after the state-elimination algorithm is performed once, then both G and G' accept the same language.
 - By construction
- Corollary. The language of the regular expression constructed from this algorithm is the same as the starting DFA

Takeaways

- Regular expressions provide an alternate "generative" way to describe regular languages
- Three ways to characterize regular languages:
 - DFAs
 - NFAs
 - Regular languages

Not All Languages Are Regular

- Any language does not a DFA that recognizes it is not-regular
- How we do prove no such DFA exists?
 - First example of an impossibility results in this class
 - Many more to come
- Intuitively, any decision problem that requires finite memory "to solve" is regular
- Question. Are finite languages regular?
 - $L \subseteq \Sigma^*$ and |L| is finite
 - All finite languages are regular

All Finite Languages are Regular

- Theorem. All finite languages are regular.
- $L = \{w_1, ..., w_n\}$ for some $n \in \mathbb{N}$
- Let $L_i = \{w_i\}$ for each $i \in \{1,...,n\}$
- $L = \bigcup_{i=1}^n L_i$
- Claim I. Each L_i is regular.
- Claim 2. A finite union of regular languages is regular.
- Using Claim I and 2, $m{L}$ is regular

Infinite Regular Languages

- Have seen many infinite regular languages
- What do they have in common?

Structure of Infinite Regular Languages

Which of these are responsible for going from finite to infinite?

Loops in DFA: Intuition

- Consider the DFA M's transitions on an input string w
- It enters some states $q_0, ..., q_1, q_2, ..., q_n$
- Question. If there is a "loop" what does that mean about the states visited?

- Now suppose two different strings x, y bring M to the same state q
- Consider attaching the same suffix z to both
- Question. What can we say about the state M is in after reading input string xz versus after reading input string yz?

Indistinguishability (DFA)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Let x, y be any string over Σ .

Definition. x indistinguishable to y with respect to a DFA M, denoted $x \sim_M y$ if and only if $\delta^*(q_0, x) = \delta^*(q_0, y)$ (i.e., the state reached by M on x is the same as the state reached by M on y)

Corollary. If $x \sim_M y$ then for all $z \in \Sigma^*$, then $xz \in L(M) \iff yz \in L(M)$

Class Exercise

- Example. $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$
- **Definition.** x indistinguishable to y with respect to a DFA M, denoted $x \sim_M y$ if and only if $\delta^*(q_0, x) = \delta^*(q_0, y)$ (i.e., the state reached by M on x is the same as the state reached by M on y)
- Question: for each state in the DFA for L, write a regular expression characterizing all strings that bring the DFA to that state.

Indistinguishability (Languages)

Let L be any language over an alphabet Σ .

Definition. x indistinguishable to y with respect to L, denoted $x \equiv_L y$ if and only if for all $z \in \Sigma^*$, we have that $xz \in L \iff yz \in L$

Observation: \equiv_L is an equivalence relation over Σ^*

Thus, \equiv_L partitions Σ^* into equivalence classes.

Distinguishing Suffixes

- Every string in the same equivalence class [x] of \equiv_L are indistinguishable with each other
- Two strings $x,y \in \Sigma^*$ are in different equivalence iff they are distinguishable
 - Can find a suffix $z \in \Sigma^*$ that distinguishes them, that is, $xz \in L$ and $yz \notin L$ or $xz \notin L$ and $yz \in L$
- Question. Suppose $x \in L$ and $y \notin L$, are they distinguishable?

Indistinguishability (Languages)

Example.

 $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$

• **Problem.** Find the equivalence classes of the relation \equiv_{L}

Indistinguishability DFA vs Languages

• Claim. If $x \sim_M y$, then $x \equiv_{L(M)} y$.

Minimal DFA

- Claim. If a language L over Σ has k equivalence classes defined by \equiv_L , then any DFA for L must have at least k states.
- Corollary. If a DFA M for L has number of states equal to the number of equivalence classes of \equiv_L then such a DFA is minimal.

Myhill-Nerode Theorem

Let L be a language over Σ^* , then L is regular **if and only if** the relation \equiv_L over Σ^* has a finite number of equivalence classes.

Myhill-Nerode Theorem

Let L be a language over Σ^* , then L is regular **if and only if** the relation \equiv_L over Σ^* has a finite number of equivalence classes.

Necessary condition. For L to be regular, it must have finitely many equivalence classes. Equivalently, if \equiv_L over Σ^* has an infinite number of equivalence classes, then L cannot be regular.

Sufficient condition. If \equiv_L has finitely many equivalence classes, then L must be regular.

Proving Non Regularity

- Myhill-Nerode theorem says that any language that has infinitely many equivalence classes with respect to \equiv_L is not regular
- Typically, we don't need to find all of equivalence classes
- Sufficient to find an infinite subset of strings that are mutually distinguishable

Fooling Sets

Definition. A set of strings $S \subseteq \Sigma^*$ is a **fooling set** with respect to a language $L \subseteq \Sigma^*$ if every pair of strings in S is distinguishable with respect to each other.

Example. $L = \{w \in \{a,b\}^* \mid w \text{ starts and ends with the same symbol}\}$ An example fooling set for L?

Question. Can the size of a fooling set be bigger than the number of equivalence classes?

- Max size of a fooling set for L=# of equivalence class of \equiv_L
- Size of any fooling set for $L \leq \#$ of equivalence class of \equiv_L

Myhill-Nerode Theorem

Maximum fooling set size of L

= # equivalence classes of \equiv_L

= minimum states of DFA for L

Takeaway. If we could prove that there exists an infinite number of distinguishable sets for a language, it would mean that even the smallest DFA for the language would require an infinite number of states. Therefore, no such DFA exists and the language cannot be regular.

Proving Non-Regularity

Problem. Prove that the language $L = \{a^i b^i \mid i \in \mathbb{N}\}$ is not regular.

Hint. Identify and prove that L has an infinite fooling set.

Proving Non-Regularity

Problem. Prove that the langueg

 $L = \{a^n \mid n \in \mathbb{N} \text{ and } n \text{ is a power of 2} \}$ is not regular.

Hint. Identify and prove that L has an infinite fooling set.