
CSCI 361 Lecture 4:  
Regular Expressions 

Shikha Singh



Announcements & Logistics
• Assignment 2 due Sept 17 (tomorrow) at 10 pm


• Please check LaTeX formatting

• Please assign pages to each question on Gradescope


• Hand in Exercise #3,  pick up Exercise #4

• Assignment 1 graded feedback will be released soon

• Reminder:  Midterm 1 (Oct 7) and Midterm 2 (Nov 6)


• Questions?



Last Time
• Defined non-deterministic finite automata 


• Relaxed transition rules compared to DFAs

• Equivalent in power


• Practice with NFAs

• Showed regular languages are closed under concatenation using NFAs



Today
• More closure:  Kleene star operation

• Regular expressions and equivalence with DFAs/NFAs



Kleene Star
• Let  be a language on 

• Definition.  Kleene star of , denoted  is defined as: 
 
    


• Example.  Suppose , what is ?


• Question.  Are regular languages closed under Kleene star?

A Σ

A A*

A* = {w1w2⋯wk |k ≥ 0 and each wi ∈ A}

L1 = {01,11} L*



Kleene Star
• Theorem.  The class of regular languages is closed under Kleene star.

Suppose this is the NFA for .  How to draw an NFA for ?L L*



• Theorem.  The class of regular languages is closed under Kleene star.

Kleene Star

Do we need this new state? Why?



• Theorem.  The class of languages are closed under Kleene star.


• Proof.  Let  be the NFA for  


• Construct NFA  to recognize 

•  (add a new start state)


•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N = (Q, Σ, δ, q0, F) L*1

Q = Q1 ∪ {q0}

F = F1 ∪ {q0}

Closed Under Kleene Star



• Theorem.  The class of languages are closed under Kleene star.


• Proof.  Let  be the NFA for  


• Construct NFA  to recognize 

•  (add a new start state)


•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N = (Q, Σ, δ, q0, F) L*1

Q = Q1 ∪ {q0}

F = F1 ∪ {q0}

Closed Under Kleene Star



• Theorem.  The class of languages are closed under Kleene star.


• Proof.  Let  be the NFA for  


• Construct NFA  to recognize 

•  (add a new start state)


•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N = (Q, Σ, δ, q0, F) L*1

Q = Q1 ∪ {q0}

F = F1 ∪ {q0}

Closed Under Kleene Star



• Theorem.  The class of languages are closed under Kleene star.


• Proof.  Let  be the NFA for  


• Construct NFA  to recognize 

•  (add a new start state)


•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N = (Q, Σ, δ, q0, F) L*1

Q = Q1 ∪ {q0}

F = F1 ∪ {q0}

Closed Under Kleene Star



Regular Expressions



Regular Expressions
• A "generative" way to characterize regular languages:  regular 

expressions

• Have many applications in programming languages

• grep/ awk in UNIX


• Define regular expressions and give examples

• Show that regular expressions are equivalent to DFA/NFA



Revisit Formal Definition
A regular expression  over the alphabet   is defined inductively as 
follows.   is regular expression if

• (base cases).  is either  for some ,  or an empty string  
or an empty set 

• (recursive cases using regular operators).   
 is the union, concatenation or Kleene star of smaller regular 

expressions that is,   or  or  where 
 are regular expressions


• Let the language of a regular expression  be the set of strings that 
can be generated by the regular expression


• Examples:  ,  ,  , etc

R Σ
R

R a a ∈ Σ ε
∅

R
R = R1 ∪ R2 R = R1 ∘ R2 R = R*1

R1, R2

L(R)

0*10* (01)* ∪ (10)* ΣΣ



Working with Regular Expressions
• If  is a regular expression then:


•

•

• But the following may not hold:


•   

• What is ? 

R

R ∪ ∅ = ?

R ∘ ε = ?

R ∪ ε = ? R

R ∘ ∅



Working with Regular Expressions
• If  is a regular expression then:


•

•

• But the following may not hold:


•  is not necessarily the same as 

•  

R

R ∪ ∅ = R

R ∘ ε = R

R ∪ ε R

R ∘ ∅ = ∅



Equivalence with Finite Automata
• Lemma (1.55 in Sipser).   If a language is described by a regular 

expression, then is regular


• Proof.  Let  is the regular expression, sufficient to create an NFA 
that recognizes 

• (base cases).   It is easy to create an NFA for each of the base 
cases for 

R
L(R)

R

R = a R = ε R = ∅



Equivalence with Finite Automata
• Lemma (1.55 in Sipser).   If a language is described by a regular 

expression, then is regular


• Proof.  Let  is the regular expression, sufficient to create an NFA 
that recognizes 

• (recursive cases).  Suppose by induction we have an NFA for 
any regular expression smaller than ,  we can create an NFA 
for  using the union/concatenation/Kleene star of these NFA

R
L(R)

R
R



Regular Expression to NFA:  Example 1.56
• Convert regular expression  to an NFA(ab ∪ a*)



Regular Expression to NFA:  Example 1.56
• Convert regular expression  to an NFA(ab ∪ a*)



Regular Expression to NFA:  Example 1.56
• Convert regular expression  to an NFA(ab ∪ a*)



Regular Expression to NFA:  Example 1.56
• Convert regular expression  to an NFA(ab ∪ a*)



NFAs to Regular Expression
• Every NFA can be converted to an equivalent regular expression

Self loops:  Kleene star

Alternate paths: union

Adjacent paths:  concatenation

R*

R1 ∪ R2

R1 ∘ R2



Converting a DFA to Regular Expression
• Lemma (1.60 in Sipser).   If a language is regular (recognized by a 

DFA), then it can be described by some regular expression.


• Proof outline.


• Convert the DFA into a GNFA (generalized NFA) with  
states  (NFA where transitions occur on regular expressions)


• Eliminate states of the GNFA one by one until two states left 

• Output the regular expression from the start to accept state

k ≥ 2



Generalized NFA
• A GNFA is a generalized NFA with the following conditions:


• Transitions are on regular expressions (not just symbols or )


• Start state has an arrow to every other state and not arrows coming in 
from any state


• Only one accept state that has arrows coming in from every other state 
and no arrows leaving it


• Every other state has arrows to every other state including itself

ε



DFA  GNFA  RegularExp⟹ ⟹
• Let  be a DFA, we can convert it to a regular 

expression as follows


• GNFA :  add a new start state  and accept state  to 

• If there is an arrow missing from  to a state , add an 
arrow labelled with 

• Add  arrows from  to 

• For any pair of states  that are neither start or accept states of 
, add additional  arrows to create a valid GNFA 


• Now perform the state-elimination algorithm described next to 
convert  with  states to  with  states 

M = (Q, Σ, δ, q0, F)

G qs qf M

qs q ∈ Q
∅

ε F qf

(p, q)
M ∅

G k G k − 1



State Elimination Algorithm
• Consider a GNFA with  states and let  be a state that is 

neither the start or accept state


• Reduce: create a GNFA with  states by removing ; replace 
all paths that go through it with an equivalent regular expression 

k > 2 qrip

k − 1 qrip



Final Regular Expression
• Perform the state elimination algorithm until there are  states 

(start and accept) states left

• Output the regular expression on the only remaining transition 

• Correctness: by induction on the number of states of GNFA

k = 2



DFA to Regular Expression Example



DFA to Regular Expression Example



DFA to Regular Expression Example



DFA to Regular Expression Example



DFA  GNFA  RegularExp⟹ ⟹
• Why does this reduction work?


• Claim.   Consider a GNFA  with  states,  let  be GNFA after 
the state-elimination algorithm is performed once, then both  and 

' accept the same language.

• By construction 

• Corollary.   The language of the regular expression constructed 
from this algorithm is the same as the starting DFA

G k G′￼

G
G



Takeaways
• Regular expressions provide an alternate "generative" way to describe 

regular languages

• Three ways to characterize regular languages:


• DFAs

• NFAs

• Regular languages



Not All Languages Are Regular
• Any language does not a DFA that recognizes it is not-regular

• How we do prove no such DFA exists?


• First example of an impossibility results in this class

• Many more to come


• Intuitively, any decision problem that requires finite memory "to 
solve" is regular


• Question.  Are finite languages regular?


•  and  is finite 

• All finite languages are regular

L ⊆ Σ* |L |



All Finite Languages are Regular
• Theorem.  All finite languages are regular.


•  for some  


• Let  for each 

•  

• Claim 1.  Each  is regular. 

• Claim 2.  A finite union of regular languages is regular. 

• Using Claim 1 and 2,  is regular

L = {w1, …, wn} n ∈ ℕ

Li = {wi} i ∈ {1,…, n}

L = ∪n
i=1 Li

Li

L



Infinite Regular Languages
• Have seen many infinite regular languages

• What do they have in common?



Structure of Infinite Regular Languages
• Which of these are responsible for going from finite to infinite?

Self loops:  Kleene star

Alternate paths: union

Adjacent paths:  concatenation

R*

R1 ∪ R2

R1 ∘ R2



Loops in DFA:  Intuition
• Consider the DFA  transitions on an input string 

• It enters some states 

• Question.  If there is a "loop" what does that mean about the states 
visited? 


• Now suppose two different strings  bring  to the same state 

• Consider attaching the same suffix  to both


• Question. What can we say about the state  is in after reading 
input string  versus after reading input string ?

M′￼s w

q0, …, q1, q2, …, qn

x, y M q

z

M
xz yz



Indistinguishability (DFA)
Let  be a DFA.   Let  be any string over .


Definition.    indistinguishable to  with respect to a DFA , 
denoted  if and only if   (i.e., the state 
reached by  on  is the same as the state reached by  on )


Corollary.  If  then for all , then  
  

M = (Q, Σ, δ, q0, F) x, y Σ

x y M
x ∼M y δ*(q0, x) = δ*(q0, y)

M x M y

x ∼M y z ∈ Σ*
xz ∈ L(M) ⟺ yz ∈ L(M)



Class Exercise
• Example. 

• Definition.    indistinguishable to  with respect to a DFA , denoted 
 if and only if   (i.e., the state reached by  on  is 

the same as the state reached by  on )


• Question:   for each state in the DFA for , write a regular expression 
characterizing all strings that bring the DFA to that state.


L = {w ∈ {a, b}* | w starts and ends with the same symbol}

x y M
x ∼M y δ*(q0, x) = δ*(q0, y) M x

M y

L



Indistinguishability (Languages)
Let  be any language over an alphabet .


Definition.    indistinguishable to  with respect to , denoted 
 if and only if for all ,  we have that   

Observation:   is an equivalence relation over 

Thus,  partitions  into equivalence classes.

L Σ

x y L
x ≡L y z ∈ Σ* xz ∈ L ⟺ yz ∈ L

≡L Σ*

≡L Σ*



Distinguishing Suffixes
• Every string in the same equivalence class  of  are 

indistinguishable with each other


• Two strings  are in different equivalence iff they are 
distinguishable


• Can find a suffix   that distinguishes them, that is,  
and   or  and 

• Question.  Suppose  and , are they distinguishable?

[x] ≡L

x, y ∈ Σ*

z ∈ Σ* xz ∈ L
yz ∉ L xz ∉ L yz ∈ L

x ∈ L y ∉ L



Indistinguishability (Languages)
• Example.  

• Problem.  Find the equivalence classes of the relation .


L = {w ∈ {a, b}* | w starts and ends with the same symbol}

≡L



Indistinguishability DFA vs Languages
• Claim.   If ,   then .
x ∼M y x ≡L(M) y



Minimal DFA
• Claim.   If a language  over  has  equivalence classes defined by

, then any DFA for  must have at least  states.


• Corollary.   If a DFA  for  has number of states equal to the 
number of equivalence classes of  then such a DFA is minimal.


L Σ k
≡L L k

M L
≡L



Myhill-Nerode Theorem

Let  be a language over , then  is regular if and only if the 
relation  over  has a finite number of equivalence classes.

L Σ* L
≡L Σ*



Myhill-Nerode Theorem

Let  be a language over , then  is regular if and only if the 
relation  over  has a finite number of equivalence classes.

L Σ* L
≡L Σ*

Necessary condition.   For  to be regular, it must have finitely many 
equivalence classes.  Equivalently,  if  over  has an infinite number 
of equivalence classes, then  cannot be regular.


Sufficient condition.  If  has finitely many equivalence classes, then 
 must be regular.

L
≡L Σ*

L

≡L

L



Proving Non Regularity
• Myhill-Nerode theorem says that any language that has infinitely 

many equivalence classes with respect to  is not regular


• Typically, we don't need to find all of equivalence classes


• Sufficient to find an infinite subset of strings that are mutually 
distinguishable  

≡L



Fooling Sets
Definition.  A set of strings  is a fooling set with respect to a 
language  if every pair of strings in  is distinguishable with 
respect to each other.


Example. 

An example fooling set for ?


Question.  Can the size of a fooling set be bigger than the number of 
equivalence classes?


• Max size of a fooling set for  = # of equivalence class of 

• Size of any fooling set for    # of equivalence class of 

S ⊆ Σ*
L ⊆ Σ* S

L = {w ∈ {a, b}* | w starts and ends with the same symbol}

L

L ≡L

L ≤ ≡L



Myhill-Nerode Theorem

Maximum fooling set size of   
 

 # equivalence classes of   
 

 minimum states of DFA for 

L

= ≡L

= L

Takeaway.  If we could prove that there exists an infinite number of 
distinguishable sets for a language, it would mean that even the smallest 
DFA for the language would require an infinite number of states.   
Therefore, no such DFA exists and the language cannot be regular.



Proving Non-Regularity 
Problem.  Prove that the language  is not regular.


Hint.  Identify and prove that  has an infinite fooling set.

L = {aibi | i ∈ ℕ}

L



Proving Non-Regularity 
Problem.  Prove that the langueg 

 is not regular.


Hint.  Identify and prove that  has an infinite fooling set.

L = {an | n ∈ ℕ and n is a power of 2}

L


