CSCI 361 Lecture 3:

Non-deterministic Finite Automata

Shikha Singh

Announcements & Logistics

- Assignment 2 released, due Sept 17 (Wed) at 10 pm
- Hand in Exercise #2, pick up Exercise #3
- Questions?

Last Time

- Definitions of DFA and regular languages
- Practice with mapping DFAs to language recognized and vice versa
- Closure of regular languages under complement, union and intersection

Today

- Introduce a nondeterministic finite automaton: NFA
- Practice with NFAs
- Equivalence theorem: DFA ←→ NFA

Concatenation

- Let A and B be languages over Σ .
- **Definition.** Concatenation of A and B, denoted $A \circ B$ is defined as

$$A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$$

Question. Are regular languages closed under concatenation?

Intuition: Closed Under Concatenation

- Let A and B be languages over Σ .
- **Definition.** Concatenation of A and B, denoted $A \circ B$ is defined as

$$A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$$

Question. Are regular languages closed under concatenation?

Non-deterministic Finite Automaton (NFA)

Relaxing the Rules

- Deterministic Finite Automaton
 (DFA)
- Non-deterministic Finite Automaton (NFA)

How Does Computation Proceed?

- Deterministic Finite Automaton
 (DFA)
- Non-deterministic Finite Automaton (NFA)

Example of NFA N_1 from Sipser

Formal Definition: NFA

A non-deterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- Σ is a finite set called the **alphabet**,
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is the transition function,
- $q_o \in Q$ is the **start** state and $F \subseteq Q$ is the set of **accept** states.

NFA Computation

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be a non-deterministic finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each $w_i \in \Sigma$. Then N accepts w if there is a sequence of r_0, r_1, \ldots, r_n in Q such that
 - $r_0 = q_0$
 - $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, 1, ..., n-1 and
 - $r_n \in F$

Class Exercise

- Build an NFAs to recognize the following languages:
- $L_1 = \{w \mid w \in \{0,1\}^* \text{ and has a } I \text{ in the 3rd position from the end} \}$
- $L_2 = \{w \mid w \in \{0,1\}^* \text{ and } w \text{ begins with 010 or ending with 110} \}$

Nondeterminism is Your Friend

- Build an NFA to recognize the following language:
- $L = \{w \mid w \in \{0,1\}^* \text{ and has a } I \text{ in the 3rd position from the end} \}$

More Examples

• What is the languages recognized by this NFAs?

DFA ←→ NFA Equivalence

Equivalence

• **Definition.** Two machines are equivalent if they recognize the same language.

- Theorem. Given any NFA N there exists an equivalent DFA M and vice versa.
 - One direction is easy: every DFA is also an NFA by definition.
 - Need to show can construct a DFA M such that L(M) = L(N)

Creating an Equivalent DFA

- Theorem. Given any NFA $N=(Q,\Sigma,\delta,q,F)$ there exists an equivalent DFA M.
- Proof outline: M "simulates" N by having a larger state space
 - If N has k states, M will have 2^k states to account for any possible subset of N's states
- In particular, $Q_M = \mathcal{P}(Q)$
- First, let's ignore arepsilon transitions
- How can M simulate N?

Example: Equivalent DFA?

Example: Equivalent DFA?

Creating an Equivalent DFA

- Theorem. Given any NFA $N=(Q,\Sigma,\delta,q,F)$ there exists an equivalent DFA M.
- Proof. $M = (Q_M, \Sigma, \delta_M, q_M, F_M)$ where
 - $Q_M = \mathcal{P}(Q)$
 - $q_M = \{q\}$
 - $\delta_{M}(R,a) = \bigcup_{q \in R} \delta(r,a)$ for any $R \in Q_{M}, a \in \Sigma$
 - $F_M = \{R \in Q \mid R \cap F \neq \emptyset\}$ (any "set" of states that contains an accept state of N)
- Correctness: $w \in L(N) \iff w \in L(M)$

Example: Equivalent DFA?

What about ε transitions?

Creating an Equivalent DFA

- Theorem. Given any NFA $N=(Q,\Sigma,\delta,q,F)$ there exists an equivalent DFA M.
- Proof. $M=(Q_M,\Sigma,\delta_M,q_M,F_M)$ where $Q_M=\mathcal{P}(Q)$ and $F_M=\{R\in Q\mid R\cap F\neq\varnothing\}$ as before.
- **Definition**. (ε -closure) $E(R) = \{q \in Q \mid q \text{ can reached from any state in } R \text{ along zero or more } \varepsilon \text{ transitions } \}$
 - Notice that $R \subseteq E(R)$ and $E(R) \in Q_M$
- Now we can define the start state of M as: $q_M = E(\{q\})$
- Transition function $\delta(R,a) = \bigcup_{r \in R} E(\delta(r,a))$ for any $R \in Q_M$, $a \in \Sigma$

Equivalent DFA

Equivalent DFA

Alternate Definition of Regular Languages

• Corollary. A language is regular iff some NFA recognizes it.

Revisit Closure Under Union

- ullet Let N_1 and N_2 be DFAs for languages L_1 and L_2
- Question. How to construct an NFA for $L_1 \cup L_2$?

Concatenation

- Let A and B be languages over Σ .
- **Definition.** Concatenation of A and B, denoted $A \circ B$ is defined as

$$A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$$

• Theorem. Regular languages are closed under concatenation.

Closed Under Concatenation

• Theorem. The class of languages are closed under concatenation.

Closed Under Concatenation

- Theorem. The class of languages are closed under concatenation.
- Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be the NFA for L_1 and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ be the NFA for L_2
- Construct NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize $L_1 \circ L_2$

•
$$Q = Q_1 \cup Q_2$$

•
$$q_0 = q_1$$

$$\bullet \quad F = F_2$$

$$\bullet \quad \delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q,a) & q \in Q_2. \end{cases}$$

Kleene Star

- Let A be a language on Σ
- Definition. Kleene star of A, denoted A^* is defined as:

$$A^* = \{w_1 w_2 \cdots w_k | k \ge 0 \text{ and each } w_i \in A\}$$

• **Example**. Suppose $L_1 = \{01,11\}$, what is L^* ?

Question. Are regular languages closed under Kleene star?

Kleene Star

• Theorem. The class of regular languages is closed under Kleene star.

Do we need this new state? Why?

Closed Under Kleene Star

- Theorem. The class of languages are closed under Kleene star.
- Proof. Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be the NFA for L_1
- Construct NFA $N=(Q,\Sigma,\delta,q_0,F)$ to recognize L_1^*
 - $Q = Q_1 \cup \{q_0\}$ (add a new start state)
 - $F = F_1 \cup \{q_0\}$

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

Not All Languages are Regular

- Intuition about regular languages:
 - DFA only has finitely many states, say k
 - Any string with at least k symbols: some DFA state is visited more than once
 - DFA "loops" on long enough strings
 - Can only recognize languages with such nice "regular" structure
- · Will see general techniques for showing that a language is not regular
- Classic example of a language that is not regular:
 - $\{w = 0^n 1^n \mid n \ge 0\}$ (equal number of 0s and 1s)