
CSCI 361 Lecture 2:  
Finite Automata

Shikha Singh

Announcements & Logistics
• Hand in Exercise 1, pick up Exercise 2

• Pick up Lecture 2 Handout

• Assignment 1 due Wed at 10 pm on Gradescope

• Make sure to use the LaTeX template provided (required)

• Midterm dates:

• October 7 (Tuesday) and Nov 6 (Thursday)

• Please make it on your calendars

• Questions?

Last Time
• Introduced history and overview of theory of computation

• Discussed course logistics and reviewed syllabus

• Defined fundamentals of input/output representation

• Alphabet and set of all strings

• Language: any subset of strings from alphabet, i.e.,

• Length of string (# of symbols)

• All input/output in this course will be binary strings, that is,
• Function problem vs decision problem:

• A function problem is given by :

• A decision problem is given by :

Σ Σ

L ⊆ Σ*

s

Σ = {0,1}

f Σ* → Σ*

f Σ* → {0,1}

Finite State Automata

Simplest Form of Computation

Deterministic Finite Automata
• A machine recognizes a language (akin to listening)

• If a given input string is in a language, the machine will
"accept" (output true), otherwise "reject" (output false)

• Question. What language is recognized by this machine?

• Try some example strings

Definition of a Finite Automaton
A finite automaton is a 5-tuple , where

• is a finite set called the states,

• is a finite set called the alphabet,

• is the transition function,

• is the start state and is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σ → Q

qo ∈ Q F ⊆ Q

Language of a Machine
• The set of all strings accepted by a finite automaton is called the

language of machine , and is written .

• Say recognizes language

• We will define accepts more formally

• Intuitive it is the strings on which it reaches an accepting state

M
M L(M)

M L(M)

M w

What Language?

Automaton Computation
• Let be a finite automaton and let

 be a string where each . Then accepts if
there is a sequence of in such that

•

• for and

•

M = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ M w

r0, r1, …, rn Q

r0 = q0

δ(ri, wi+1) = ri+1 i = 0,1,…, n − 1

rn ∈ F

Extended Transition Function
• Let be a DFA

• Transition function is often extended to
 where is defined as the state the DFA

ends up in if it starts at and reads the string

• Alternate definition of accepts

M = (Q, Σ, δ, q0, F)

δ : Q × Σ → Q
δ* : Q × Σ* → Q δ*(q, w)

q w

M w ⟺ δ*(q0, w) ∈ F

Language of a Machine
• The set of all strings accepted by a finite automaton is called the

language of machine , and is written .

• Say recognizes language

M
M L(M)

M L(M)

L(M1) = {w | w contains at least one 1 and an even number of zeroes follow the last 1}

M1

M2

L(M2) = {w | w ∈ {a, b}* that starts and ends with the same symbol}

Regular Languages
• Definition. A language is called a regular language if some

deterministic finite automaton recognizes it.

• Thus, to show a language is regular, we must design a DFA that
recognizes it, that is,

• accepts

L M
L(M) = L

M w ⟺ w ∈ L

Class Exercise: Practice with DFAs
• Show that the following languages are regular by drawing the state

diagram of a DFA that recognizes it:

• contains an even number of 1s
• ends in 01
• contains the substring

{w ∈ {0,1}* | w }

{w ∈ {0,1}* | w }

{w ∈ {a, b}* | w aba }

How About These Languages?
• Any similarities?

• contains an odd number of 1s

• does not end in

• does not contain the substring

L4 = {w ∈ {0,1}* | w }

L5 = {w ∈ {0,1}* | w 01}

L4 = {w ∈ {a, b}* | w aba }

Regular Operations

Building New Languages From Old
• Let be a language on
• Complement of , denoted

A Σ

A A = {w ∈ Σ* | w ∉ A}

Closed Under Complement
• Theorem. The class of regular languages is closed under the

complement operation.

Union and Intersection
• Let and be regular languages over .

• Is regular? Is regular?

A B Σ

A ∪ B A ∩ B

Closed Under Intersection
Theorem. The class of regular languages is closed under the
intersection operation.

Closed Under Union
Theorem. The class of regular languages is closed under the union
operation.

Concatenation
• Let and be languages over .

• Definition. Concatenation of and , denoted is defined as 
 

• Question. Are regular languages closed under concatenation?

A B Σ

A B A ∘ B

A ∘ B = {xy |x ∈ A and y ∈ B}

Intuition: Closed Under Concatenation
• Let and be languages over .

• Definition. Concatenation of and , denoted is defined as 
 

• Question. Are regular languages closed under concatenation?

A B Σ

A B A ∘ B

A ∘ B = {xy |x ∈ A and y ∈ B}

Non-deterministic Finite
Automaton (NFA)

Formal Definition: NFA
A non-deterministic finite automaton (NFA) is a 5-tuple

, where

• is a finite set called the states,

• is a finite set called the alphabet,

• is the transition function, where

• is the start state and is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σε → 𝒫(Q) Σε = Σ ∪ {ε}

qo ∈ Q F ⊆ Q

NFA Computation
• Let be a non-deterministic finite automaton and

let be a string where each . Then accepts
 if there is a sequence of in such that

•

• for and

•

N = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ N

w r0, r1, …, rn Q

r0 = q0

ri+1 ∈ δ(ri, wi+1) i = 0,1,…, n − 1

rn ∈ F

Nondeterminism is Your Friend
• Build an NFA to recognize the following language:

• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA

Nondeterminism is Your Friend
• Build an NFA to recognize the following language:

• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA

DFA

Another Example
• What is the language recognized by this NFA?

DFA NFA  
Equivalence

⟺

Equivalence
• Definition. Two machines are equivalent if they recognize the same

language.

• Theorem. Given any NFA there exists an equivalent DFA and
vice versa.

• One direction is easy: every DFA is also an NFA by definition.

• Need to show can construct a DFA such that

N M

M L(M) = L(N)

Creating an Equivalent DFA
• Theorem. Given any NFA there exists an

equivalent DFA .

• Proof outline: "simulates" by having a larger state space

• If has states, will have states to account for any possible
subset of 's states

• In particular,

• First, let's ignore transitions

• How can simulate ?

N = (Q, Σ, δ, q, F)
M

M N

N k M 2k

N

QM = 𝒫(Q)

ε

M N

Example: Equivalent DFA?

Example: Equivalent DFA?

Creating an Equivalent DFA
• Theorem. Given any NFA there exists an

equivalent DFA .

• Proof. where

•

•

• for any ,

• (any "set" of states that contains an
accept state of)

• Correctness:

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM)

QM = 𝒫(Q)

qM = {q}

δM(R, a) = ∪q∈R δ(r, a) R ∈ QM a ∈ Σ

FM = {R ∈ Q | R ∩ F ≠ ∅}
N

w ∈ L(N) ⟺ w ∈ L(M)

Example: Equivalent DFA?

What about transitions?ε

Creating an Equivalent DFA
• Theorem. Given any NFA there exists an

equivalent DFA .

• Proof. where and
 as before.

• Definition. (-closure) = can reached from any
state in along zero or more transitions

• Notice that and

• Now we can define the start state of as:

• Transition function for any ,

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM) QM = 𝒫(Q)
FM = {R ∈ Q | R ∩ F ≠ ∅}

ε E(R) {q ∈ Q | q
R ε }

R ⊆ E(R) E(R) ∈ QM

M qM = E({q})

δ(R, a) = ∪r∈R E(δ(r, a)) R ∈ QM a ∈ Σ

Equivalent DFA

Equivalent DFA

Alternate Definition of Regular Languages
• Corollary. A language is regular iff some NFA recognizes it.

