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Announcements & Logistics
• Hand in Exercise 1, pick up Exercise 2

• Pick up Lecture 2 Handout

• Assignment 1 due Wed at 10 pm on Gradescope

• Make sure to use the LaTeX template provided (required)

• Midterm dates:  


• October 7 (Tuesday) and Nov 6 (Thursday)

• Please make it on your calendars


• Questions?



Last Time
• Introduced history and overview of theory of computation 

• Discussed course logistics and reviewed syllabus 

• Defined fundamentals of input/output representation


• Alphabet  and set of all strings 

• Language: any subset of strings from alphabet, i.e., 

• Length of string  (# of symbols)


• All input/output in this course will be binary strings, that is, 
• Function problem vs decision problem:


• A function problem is given by   : 

• A decision problem is given by   : 

Σ Σ

L ⊆ Σ*

s

Σ = {0,1}

f Σ* → Σ*

f Σ* → {0,1}



Finite State Automata



Simplest Form of Computation



Deterministic Finite Automata
• A machine recognizes a language (akin to listening)


• If a given input string is in a language, the machine will 
"accept" (output true), otherwise "reject" (output false)


• Question.  What language is recognized by this machine?

• Try some example strings



Definition of a Finite Automaton
A finite automaton is a 5-tuple , where


•  is a finite set called the states,


•  is a finite set called the alphabet,


•  is the transition function,


•  is the start state and  is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σ → Q

qo ∈ Q F ⊆ Q



Language of a Machine
• The set of all strings accepted by a finite automaton  is called the 

language of machine , and is written .


• Say  recognizes language 

• We will define  accepts  more formally

• Intuitive it is the strings on which it reaches an accepting state


M
M L(M)

M L(M)

M w



What Language?



Automaton Computation
• Let  be a finite automaton and let 

 be a string where each .  Then  accepts  if 
there is a sequence of   in  such that


•

•  for  and


•

M = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ M w

r0, r1, …, rn Q

r0 = q0

δ(ri, wi+1) = ri+1 i = 0,1,…, n − 1

rn ∈ F



Extended Transition Function
• Let  be a DFA


• Transition function  is often extended to 
 where  is defined as the state the DFA 

ends up in if it starts at  and reads the string 

• Alternate definition of  accepts    

M = (Q, Σ, δ, q0, F)

δ : Q × Σ → Q
δ* : Q × Σ* → Q δ*(q, w)

q w

M w ⟺ δ*(q0, w) ∈ F



Language of a Machine
• The set of all strings accepted by a finite automaton  is called the 

language of machine , and is written .


• Say  recognizes language 

M
M L(M)

M L(M)

L(M1) = {w | w contains at least one 1 and an even number of zeroes follow the last 1}

M1

M2

L(M2) = {w | w ∈ {a, b}* that starts and ends with the same symbol}



Regular Languages
• Definition.  A language is called a regular language if some 

deterministic finite automaton recognizes it.


• Thus, to show a language  is regular, we must design a DFA  that 
recognizes it, that is, 

•  accepts   

L M
L(M) = L

M w ⟺ w ∈ L



Class Exercise:  Practice with DFAs
• Show that the following languages are regular by drawing the state 

diagram of a DFA that recognizes it:

•  contains an even number of 1s 
•  ends in 01 
•  contains the substring  

{w ∈ {0,1}* | w }

{w ∈ {0,1}* | w }

{w ∈ {a, b}* | w aba }



How About These Languages?
• Any similarities?


•  contains an odd number of 1s 

•  does not end in 

•  does not contain the substring  

L4 = {w ∈ {0,1}* | w }

L5 = {w ∈ {0,1}* | w 01}

L4 = {w ∈ {a, b}* | w aba }



Regular Operations



Building New Languages From Old
• Let  be a language on 
• Complement of , denoted 

A Σ

A A = {w ∈ Σ* | w ∉ A}



Closed Under Complement
• Theorem.  The class of regular languages is closed under the 

complement operation.



Union and Intersection
• Let  and  be regular languages over .

• Is  regular?   Is  regular?

A B Σ

A ∪ B A ∩ B



Closed Under Intersection
Theorem. The class of regular languages is closed under the 
intersection operation.



Closed Under Union
Theorem. The class of regular languages is closed under the union 
operation.



Concatenation
• Let  and  be languages over .   


• Definition.  Concatenation of  and , denoted  is defined as 
 
    


• Question.  Are regular languages closed under concatenation?

A B Σ

A B A ∘ B

A ∘ B = {xy |x ∈ A and y ∈ B}



Intuition:  Closed Under Concatenation
• Let  and  be languages over .   


• Definition.  Concatenation of  and , denoted  is defined as 
 
    


• Question.  Are regular languages closed under concatenation?

A B Σ

A B A ∘ B

A ∘ B = {xy |x ∈ A and y ∈ B}



Non-deterministic Finite 
Automaton (NFA)



Formal Definition:  NFA
A non-deterministic finite automaton (NFA) is a 5-tuple 

, where

•  is a finite set called the states,


•  is a finite set called the alphabet,


•  is the transition function, where 

•  is the start state and  is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σε → 𝒫(Q) Σε = Σ ∪ {ε}

qo ∈ Q F ⊆ Q



NFA Computation
• Let  be a non-deterministic finite automaton and 

let  be a string where each .  Then  accepts 
 if there is a sequence of   in  such that


•

•  for  and


•

N = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ N

w r0, r1, …, rn Q

r0 = q0

ri+1 ∈ δ(ri, wi+1) i = 0,1,…, n − 1

rn ∈ F



Nondeterminism is Your Friend
• Build an NFA to recognize the following language:


• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA



Nondeterminism is Your Friend
• Build an NFA to recognize the following language:


• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA

DFA



Another Example
• What is the language recognized by this NFA?



DFA  NFA  
Equivalence 

⟺



Equivalence
• Definition.  Two machines are equivalent if they recognize the same 

language.


• Theorem.  Given any NFA  there exists an equivalent DFA  and 
vice versa.  


• One direction is easy:  every DFA is also an NFA by definition.


• Need to show can construct a DFA  such that 

N M

M L(M) = L(N)



Creating an Equivalent DFA
• Theorem.  Given any NFA  there exists an 

equivalent DFA .


• Proof outline:   "simulates"  by having a larger state space


• If  has  states,  will have  states to account for any possible 
subset of 's states


• In particular, 

• First, let's ignore  transitions


• How can  simulate ?

N = (Q, Σ, δ, q, F)
M

M N

N k M 2k

N

QM = 𝒫(Q)

ε

M N



Example:  Equivalent DFA?



Example:  Equivalent DFA?



Creating an Equivalent DFA
• Theorem.  Given any NFA  there exists an 

equivalent DFA .


• Proof.   where


•

•

•  for any , 

•  (any "set" of states that contains an 
accept state of )


• Correctness:  

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM)

QM = 𝒫(Q)

qM = {q}

δM(R, a) = ∪q∈R δ(r, a) R ∈ QM a ∈ Σ

FM = {R ∈ Q | R ∩ F ≠ ∅}
N

w ∈ L(N) ⟺ w ∈ L(M)



Example:  Equivalent DFA?



What about  transitions?ε



Creating an Equivalent DFA
• Theorem.  Given any NFA  there exists an 

equivalent DFA .


• Proof.   where  and 
 as before.


• Definition. ( -closure)  =  can reached from any 
state in  along zero or more  transitions 

• Notice that  and 

• Now we can define the start state of  as:   

• Transition function  for any , 

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM) QM = 𝒫(Q)
FM = {R ∈ Q | R ∩ F ≠ ∅}

ε E(R) {q ∈ Q | q
R ε }

R ⊆ E(R) E(R) ∈ QM

M qM = E({q})

δ(R, a) = ∪r∈R E(δ(r, a)) R ∈ QM a ∈ Σ



Equivalent DFA



Equivalent DFA



Alternate Definition of Regular Languages
• Corollary.  A language is regular iff some NFA recognizes it.


