CSCI 361 Lecture 16: Wrap Up Computability Theory

Shikha Singh

Announcements & Logistics

- No exercise to hand in
- Pick up Exercise 13 that is due 1 week from today
- Midterm 2 on Thursday in class
 - Topics HW 4-7 (CFG to undecidability) is on the syllabus
 - Will discuss practice exam today
- HW 8 will be released Thursday and due following Wed
 - Leftover undecidability and mapping reducibility questions

Last Time

 Introduced PCP problem and an example of reduction using TM's computation history

Today

- Wrap up computability theory
- Introduce the next unit on complexity theory
- Answer questions about the practice exam

Post Correspondence Problem

- An instance of the Post correspondence problem (PCP) is two sequences $A=(a_1,a_2,...,a_m)$ and $B=(b_1,b_2,...,b_m)$ of strings where $a_i,b_i\in\Sigma^*$
- Problem. Does there exist a finite sequence $i_1, i_2, ..., i_k$ where each i_j is an index from 1, ..., m such that $a_{i_1}a_{i_2}...a_{i_k} = b_{i_1}b_{i_2}...b_{i_k}$
- · Alternate Formulation: An input is a collection of dominos each

containing two strings
$$\left[\frac{a_1}{b_1}\right], \left[\frac{a_2}{b_b}\right], ..., \left[\frac{a_m}{b_m}\right]$$
 and the goal is to find

a sequence of these dominoes (repetitions are allowed) such that the string formed by concatenating the top is the same as the string formed by concatenating the bottom

CFG Disjointness is Undecidable

Review. Create CFLs L_A and L_B as follows:

$$A \rightarrow a_1 A i_1 \mid a_2 A i_2 \mid \cdots \mid a_m A i_m$$
$$A \rightarrow a_1 i_1 \mid a_2 i_2 \mid \cdots \mid a_m i_m$$

$$B \to b_1 B i_1 \mid b_2 B i_2 \mid \cdots \mid b_m B i_m$$
$$A \to a_1 i_1 \mid a_2 i_2 \mid \cdots \mid a_m i_m$$

Question. What can we say about the strings in $L(L_A) \cap L(L_B)$?

Correspond to solutions to the PCP problem

CFG Disjointness is Undecidable

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right] \right\}.$$

Example.

 $A \rightarrow bA1 \mid aA2 \mid caA3 \mid abcA4 \mid b1 \mid a2 \mid ca3 \mid abc4$ $B \rightarrow caB1 \mid abB2 \mid aB3 \mid cB4 \mid ca1 \mid ab2 \mid a3 \mid c4$ Solution to PCP:

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

String derived from A: a b ca a abc 42312

String derived from B: ab ca a ab c 42312

ALL_{CFG} is undecidable

Reduction from PCP.

Suppose ALL_{CFG} is decidable and let N be a decider for it. M below is a decider for PCP.

- Given instance (A,B) of PCP, create a grammars $\mathcal{L}_{\!A}$ and $\mathcal{L}_{\!B}$
- $L_A \cap L_B = \emptyset$ iff (A, B) does not have a solution
- $\overline{L_A \cap L_B} = \overline{L_A} \cup \overline{L_B} = \Sigma^*$ iff (A,B) does not have a solution

Question. Are CFGs closed under complement?

- Not in general, no
- However L_A, L_B have a special structure we can exploit
- They are both can be recognized by a deterministic PDA

Useful Lemma

Lemma. Complement of a DCFLs (CFLs recognized by a deterministic push-down automata) are CFLs.

- No non-deterministic branches involving hard-to-track stack manipulations
- Can just flip accept/reject states similar to an NFA

ALL_{CFG} is undecidable

Reduction from PCP.

Suppose ALL_{CFG} is decidable and let N be a decider for it. M below is a decider for PCP.

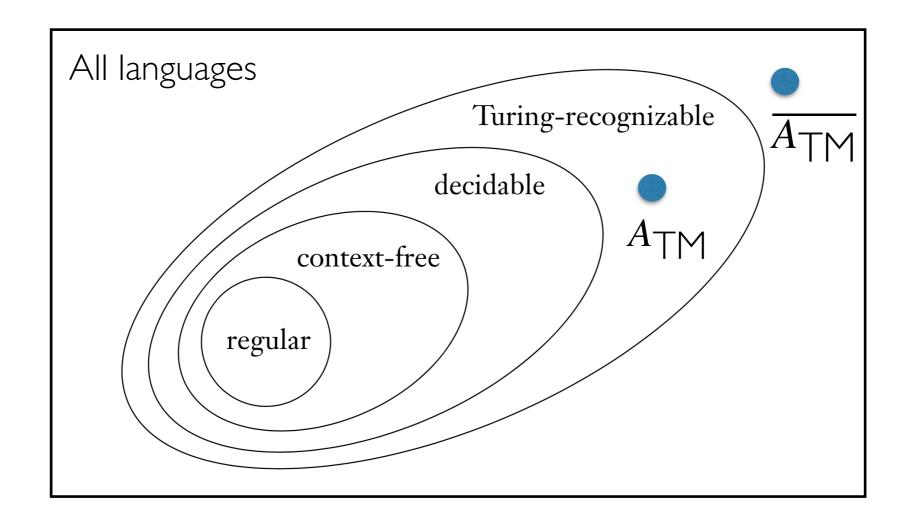
- Given instance (A,B) of PCP, create a grammars $\mathcal{L}_{\!A}$ and $\mathcal{L}_{\!B}$
- Create CFLs for $\overline{L_{\!A}}$ and $\overline{L_{\!B}}$ (can be done by first converting to DPDA and then flipping states, then converting back to CFG)
- Create CFL $L_{\overline{AB}}$ for $\overline{L_{\!A}} \cup \overline{L_{\!B}}$
- Run N to determine if $L_{\overline{AB}}$ generates all strings in Σ^*
- If it accepts, then reject. Otherwise, accept

Undecidability CFG Takeaways

- Almost all properties of regular languages are decidable
- Lots of undecidable problems about CFGs
 - Let G_1, G_2 be CFGs and R be a regular expression, then the following questions are undecidable:
 - Is $L(G_1) = L(G_2)$?
 - Is $L(G_1) = L(R)$?
 - Is $L(G_1) \subseteq L(G_2)$?
 - Is $L(R) \subseteq L(G_1)$?
- · Deciding any non-trivial property of TM is undecidable
- This is a motivation for studying restricted models of computation

Our Picture

- Final Question. Is there a language L such that L is not Turing recognizable and \overline{L} is also not Turing recognizable.
- Recall. If $A \leq_m B$ and A is not Turing recognizable, then B is not Turing recognizable.

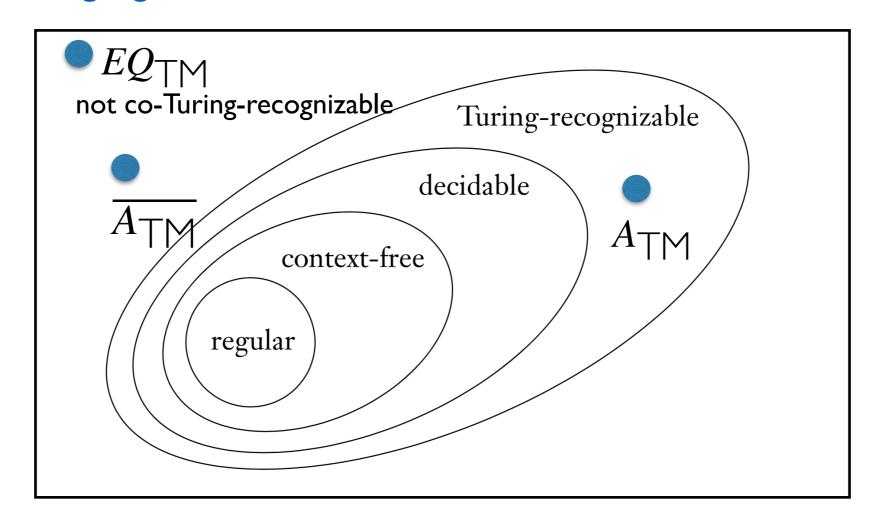


Class Exercise

- Theorem. EQ_{TM} is neither Turing recognizable nor co-Turing recognizable (its complement is not Turing recognizable).
- Proof outline.
 - To show EQ $_{TM}$ and \overline{EQ}_{TM} are not Turing recognizable, need to reduce a known Turing unrecognizable language to them
 - That is, $\overline{A_{TM}} \leq_m \operatorname{EQ}_{TM}$ and $\overline{A_{TM}} \leq_m \overline{\operatorname{EQ}_{TM}}$
 - Equivalently, show that $A_{TM} \leq_m \mathsf{EQ}_{TM}$ and $A_{TM} \leq_m \mathsf{EQ}_{TM}$
- Ideas on how to do this?
 - Part I. $A_{TM} \leq_m EQ_{TM}$
 - Part 2. $A_{TM} \leq_m \overline{EQ}_{TM}$

Completed Picture of Computability

All Languages



Complexity Theory

- So far, we were focused on computability theory
 - What problems can and cannot be solved by various models of a computer (starting from most restricted to most powerful)
- Now, we want to ask the question:
 - What problem can be efficiently solved by a computer?
- CSCI 256 covers all about algorithmic design strategies as well as analysis tools
 - This class: Assume that you know this and won't focus on it
- Instead focus on classifying complexity of CFGs,TMs, etc as well as reductions to prove problems are NP complete

How to Measure Efficiency

- Time complexity as number of steps
- Complexity measured as a function of input size
- Worst case notion: for any inputs of size n

Definition. Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M takes on any input of length n.

Asymptotic Analysis

- As covered in CSCI 256, we don't care about time complexity on small inputs but rather how it grows as n becomes large
- Review asymptotic notation to do this: Big O, Little O

Definition. We say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every $n \ge n_0$

$$f(n) \le c \cdot g(n)$$

Definition. We say
$$f(n) = o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Exercise: True or False?

1.
$$8n + 5 = O(n)$$

2.
$$1000n + \sqrt{n} = o(n)$$

$$3. \quad n\sqrt{n} = O(n^2)$$

$$4. \ \sqrt{n} = o(n)$$

$$5. \log_2 n = o(\ln n)$$

6. $n \log \log n = o(n \log n)$

Time Complexity Class

Definition. Let $t : \mathbb{N} \to \mathbb{N}$ be a function. The time complexity class, TIME(t(n)), is

 $TIME(t(n)) = \{L \mid L \text{ is decided by a TM in } O(t(n)) \text{ steps} \}$

Time Complexity Example

Consider a TM M for for the language $A = \{0^n 1^n \mid n \ge 0\}$:

M = "On input string w,

- I. Scan across the tape and reject if a 0 is found to the right of a 1.
- 2. Repeat the following if both 0s and 1s remain.
 - 1. Scan across tape, crossing off a single 0 and a single 1.
- 3. If either 0 or 1 remains, reject. Otherwise, accept."
- Time complexity?
- Can we do better?

Fun Fact

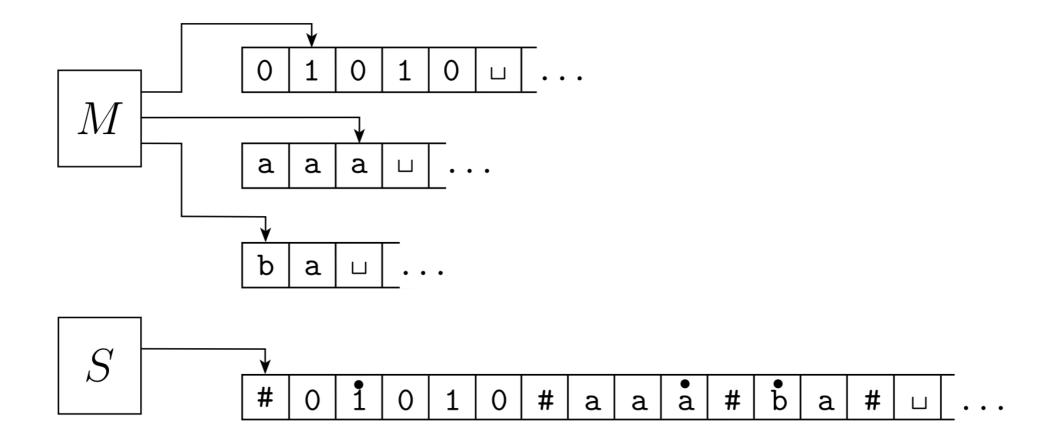
• Let $f(n) = o(n \log n)$. TIME(f(n)) contains only regular languages!

Polynomial Equivalence

- How quickly can we decide the language $A = \{0^n1^n \mid n \ge 0\}$ on a two tape TM?
 - Can do this in O(n) time
- **Takeaway:** Different models of computation can yield different running times for the same language!
- Let's revisit multi-tape TM to single tape reduction with the lens of complexity theory

Multitape TM to Single Tape TM

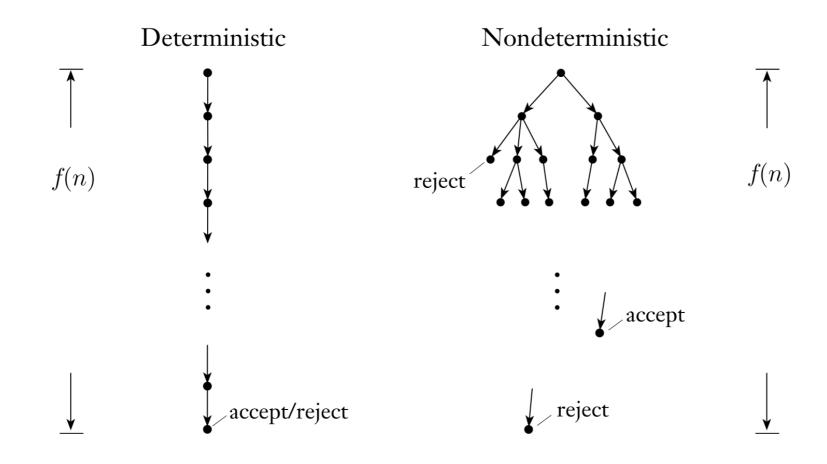
• Theorem. Every t(n)-time multi-tape TM has an equivalent $O(t^2(n))$ -time single-tape TM, where $t(n) \ge n$.



· Takeaway: Both models are polynomially-equivalent.

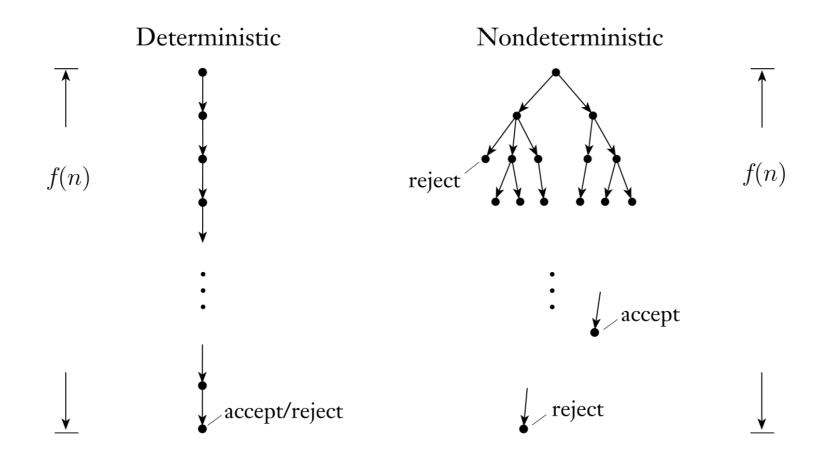
How About Non-Determinism?

• **Definition.** Let M be a non-deterministic TM that halts on all inputs. The running time or time complexity of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M takes on any branch of its computation on any input of length n.



How About Non-Determinism?

• Theorem. Every t(n)-time non-deterministic TM has an equivalent $2^{O(t(n))}$ -time deterministic TM, where $t(n) \ge n$.



Takeaway: NTM is not polynomially-equivalent to a DTM.

Complexity Class P

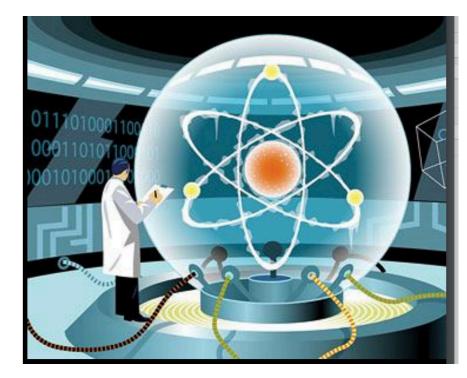
Definition. P is the class of languages that are decidable in polynomial time on a single-tape Turing machine. That is,

$$P = \bigcup_k TIME(n^k)$$

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms

= polynomial-time algorithms



- Much more controversial:
 - Is $O(n^{10})$ efficient?
 - Randomized algorithms/ quantum algorithms can do much better

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms

= polynomial-time algorithms

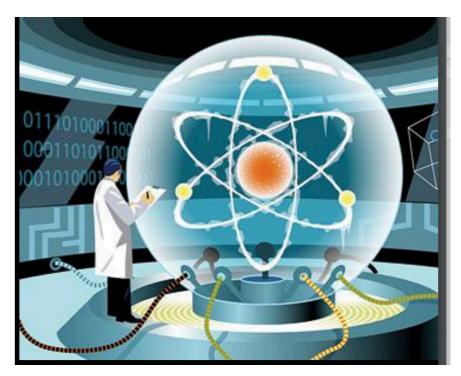


Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Review

- Closure properties of regular languages
- Closure properties of CFGs
- Closure properties of decidability
- Examples of context-free languages and non-context free languages
- Examples of decidable and non-decidable languages
- Examples of Turing recognizable and non-recognizable languages