
CS 361: Theory of Computation

Lecture 1: Introduction & Logistics 

 
Shikha Singh

Announcements & Logistics
• Welcome to the first class!

• Things to grab: Exercise 1 (due next lecture) and Lecture 1 Handout

• Make sure to sign the attendance sheet that is circulating

• Course website (https://williams-cs.github.io/cs361-f25/)

https://williams-cs.github.io/cs361-f25/

• Go by Shikha or Prof Singh (she/her)

• 7th year at Williams

• Typically teach intro and theory courses

• CS 134, CS 256, CS 357, CS 361

• Research area

• Data structures

• Algorithmic Game Theory

• Complexity Theory

• New direction: Algorithms with learned predictions

About Me

What is Theory of Computation?

What is Computation?

What is Computation

Input

Output

"Computer"

Computers Now

Computers: Early 20th Century

Earliest: Analytic Engine and Note G
Charles Babbage’s Analytic Engine was the first universal computing device ever
designed. It followed his Difference Engine for evaluating polynomial functions in
the 1830s. Both machines were mechanical and were never fully built at the time.
However, sophisticated algorithms were written for it by Babbage and Ada
Lovelace. In particular, Lovelace’s Note G is the first ever published algorithm.

[1843] Lovelace’s Note G computes Bernoulli numbers

Algorithms are Ancient
• Algorithms have been around for thousands of years

• Grade-school multiplication algorithm was invented by Babylonians

• Euclid's GCD algorithm (~300 BC)

How Do We Define an Algorithm?
• What constitutes an algorithm? How do we define it?

• Intuitively, step by step process

• That eventually terminates and produces the desired output

• To design algorithms, this intuitive understanding was sufficient

• Components of an algorithm:

• Specification: What is the task the algorithm performs

• Implementation: How is the task accomplished

• Analysis: Is it correct? Is it efficient?

• Question. Can all problems be solved by some algorithm?

Theory of Computation
• Need a formal model of what it means to solve a problem

• Theory of Computation:

• Building a mathematical model for computation

• Using the model to understand the power and limits of computation

• Gain insights that inform applications

Where it Started: Hilbert's Challenges
• [1900-1930] David Hilbert identifies several mathematical problems

as the challenges for the coming century

• Two of these problems concerned Computer Science

1862 - 1943

Hilbert's 10th Problem
• Hilbert's 10th problem [1900]:

• Given a multivariate polynomial with integer coefficients, is there a
process that determines in a finite number of operations
whether the equation has an integral solution

3x2 − 2xy − y2z − 7 = 0

x = 1,y = 2,z = − 2

x2 + y2 + 1 = 0

Integer solution

No solution

Hilbert's Entscheidungsproblem
• Hilbert believed the answer was yes but many attempts failed

• To show it was not solvable, more formalization was needed of what it

means to use a "finite procedure" to solve a problem

• Hilbert's Entscheidungsproblem (Decision problem) [1928]:

• Is there a finite procedure that determines whether a given
mathematical statement is true or false?

• Hilbert again believed the answer was yes:

• There was no such thing as an unsolvable problem

Hilbert's Tombstone: "Wir müssen wissen. Wir werden wissen
= We must know. We shale know"

Attempts to Define Computation
• [1930s: Post, Gödel, Church] attempt to solve Hilbert's

Entscheidungsproblem

• Post machine, lambda calculus, Gödel machine

Kurt GödelEmil Post Alonzo Church

Birth of Computer Science
• [1936] As a graduate student Alan Turing (at age 24) 

devised what is now called the Turing machine and used 
it to devise an uncomputable problem

• Church and Turing:

• -computable Turing computableλ ≡

Church and Turing Thesis
• Turing machines predates modern computer as we know it, yet there is

no existing physical model that cannot be modeled by it

• Church-Turing Thesis:

• Intuitive notion of "computable" is captured by functions
computer by a Turing machine

• [Physical CT Thesis] Any computational problem that can be
solved by any physical process, can be solved by a Turing machine

Hilbert's Challenges: Conclusion
• Hilbert's 10th problem [1900]:

• Given a multivariate polynomial with integer
coefficients, is there a process that
determines in a finite number of
operations whether the equation is solvable

• No: Martin Davis, Yuri Matiyasevich, Hilary
Putnam and Julia Robinson [1970]

• Hilbert's Entscheidungsproblem (Decision problem)
[1928]:

• Is there a finite procedure that determines
whether a given mathematical statement is true
or false?

• No: Alan Turing [1936]

Computability and Complexity
• Computability of a problem:

• Can a problem be solved by a given computational model

• Start with restricted models: automaton

• Build up to Turing machines (modeling modern computers)

• Complexity of a problem:

• Is there an efficient algorithm to solve it?

• Efficiency: time and space complexity

• Practice with reductions

• Study the hierarchy of these classes

Course Logistics

Textbooks
• Primary: Introduction to Theory of Computation (3rd ed) by Sipser

• Will follow it pretty closely

• Reserved at Schow if you need it

• Unofficial PDFs floating around...

• Supplemental readings:

• Introduction to TCS by Boaz Barak

• Online: https://introtcs.org/public/index.html

https://introtcs.org/public/index.html

Course Webpage
• Link: https://williams-cs.github.io/cs361-f25/

• Lecture materials, readings and assignments will be posted here

• Will occasionally use GLOW for internal documents

https://williams-cs.github.io/cs361-f25/

Syllabus and Grade Breakdown
• Posted on course webpage

• https://williams-cs.github.io/cs361-f25/handouts/syllabus.pdf

• Grading breakdown:

• Attendance & Class Participation (5 %)

• Assignments (20 %)

• Daily Exercises (10%)

• Midterms (20 + 20 %)

• Final Exam (25 %)

https://williams-cs.github.io/cs361-f25/handouts/syllabus.pdf

Problem Sets / Assignments
• Problem sets for practicing concepts from class

• Open ended, frequently proofs

• Must be typeset in LaTeX (using provided template in Overleaf)

• Anonymized grading: no name/ID on HWs

• Submit via Gradescope (Course ID: 7XZ2KZ)

• Assignments will be released on Thursdays and due on Wed at 10 pm

Assignment 1
• First assignment has been released and due Sept 10 Wed at 10 pm

• Based on today's lecture and reading for Tuesday's lecture

Daily Exercises
• Due each day at the beginning of class:

• Please grab the next lecture's exercise sheet

• Very short pencil & paper question based on the reading

• Graded mostly on completion

• Low stakes questions to familiarize you with upcoming definitions

• No late submission accepted:

• Lowest two will be dropped

Attendance & Class Participation
• Attendance is required in this class

• I like interaction in my classes!

• Most lectures will include in-class problem solving

• Incentive to attend and engage in class: 5% of final grade

• Everyone can miss two-classes at no penalty

• Otherwise, if you need to miss, reach out ahead of time

• Help build a good community in class

• Come prepared and help each other!

Bottom line. Help create a vibrant, positive, and inclusive classroom environment!

Honor Code
• No collaboration or help on daily exercises - do individually

• Collaboration on problem sets is allowed: can discuss high-level ideas,

clarifications, examples to understand the question, etc

• Should not discuss low-level details, do joint writing

• HW problems are low-stakes practice for exams: should not search
the internet/ChatGPT with question specific prompts

• Shortcuts take away valuable learning opportunities

• Best way to train for the exam is to sit with and work through

the HW problems

• You must arrive at on your own and understand the work you submit

Bottom line. Any work that is not your own is a violation of the Honor Code.

How to Succeed in This Class
• Do the readings and bring questions to lecture

• The textbook is very accessible

• Struggle through the problem sets

• No substitute for trying out different ideas and hitting dead ends

• This is a workout for your thinking muscles

• But when stuck.... seek help!

• Proofs are not very different from code

• Need to edit, polish, debug and craft a "good" proof

• Read the feedback on problem sets and look at sample solutions

to get a sense of the expectations on formalism

Course Support
• Instructor Office Hours:

• Mon, Tues & Wed: 2 - 3.25 pm in TCL 304

• Two TAs: Juan Mendez and Luke Zanuck

• TA help hours (starting Monday):

• Mon 7- 9 pm, Tues 8-10 pm, Wed 7 - 10 pm in TPL 206

Juan Luke

 Course Progression
• Finite automaton

• Push-down automaton

• Turing machine

• Sequencing, repetition

• Function calls/ simple recursion

• Simple loops as well as multiple
recursive calls

 Topic Outline
• Week 1: Sets, Languages & Finite Automaton

• Week 2-3: Regular Languages

• Week 4: Context-free grammars

• Week 5-7: Turing machines and computability

• Week 8-10: Time and Space Complexity, Reductions

• Week 11-12: Advanced topics, student presentations

Is this Stuff Useful?
• Typical computer scientist attitude: urgency to "build"

• CSCI 361 is not about building or coding, but....

• Concepts have stood the test of time and led to many insights

• Old paradigm: Good theory informs good practice

• Also, concepts in this course have proved particularly applicable

• Automaton & RegEx Scanners, circuit design, cellular automaton

• Context-free grammars Building parsers for compilers

• Computability and halting program Program verification

• Formal systems and logic Foundation of AI and Databases

• Complexity Theory Cryptography and Security

→

→

→

→

→

Data Representation

Representing Data
• Mathematically modeling input/output?

• Input/output can be any object:

• Images, text, electrical signals, social network, etc

• What is the typical approach in CS?

• "Encode" this data into text/strings

• Specifically binary strings

Input

Output

Encodings
• Not specific to CS languages:

• Spoken languages encode spoken sounds through letters and words

• Alphabet = a non-empty and finite set made up of symbols

• String : a finite (possibly empty) sequence of symbols from

• where each

• Binary strings with

• (empty string)

•

• Does the choice of alphabet matter?

Σ

s Σ

s = a1a2⋯an ai ∈ Σ

Σ = {0,1}

ϵ

01, 000, 1110000⋯111

Encoding Input Data as String
• Length of a string denoted the number of symbols in

• set of all finite-length strings over
• Example: 

•

•  

• Note: is an infinite set, but each string in it has a finite length

• Given a set of objects, an encoding is an injective (one-to-one)
function that maps to

• No two objects have the same encoding

s |s | = s

Σ* = Σ

{0,1}* = {ϵ,0,1,00,01,10,11,000,…}

{a}* = {ϵ, a, aa, aaa, …}

Σ*

A
A Σ*

What Can We Encode?
• Aside. Can we encode everything?

• Encodability = Countability (will come back to this)

• How do we encode uncountable sets (e.g.)?

• Approximation (with some precision)

• Often restricting to binary alphabet:

• Can encode an alphabet with in binary using bits

• This extra factor is constant wrt size of input

ℝ

|Σ | = k ⌈log2 k⌉

Takeaway: In theory of computation, all
input/output data is a string

Back to Computation
• Input and output are strings over an alphabet

• Input can be any finite length string

• Output is a finite length string

• Now we need to define computation

• For every input, there is an output

• What mathematical object captures this?

• A function from

• Question. Is computation just a function?

• We need to know how to transform 
the input to the output

f Σ* → Σ*

Input string

Output string

Function Problem
• Specification of a computational problem

• Function problem:

• A function of the form
• Specifies input, output pairs

• A computer/algorithm solves function problem  
if its input/output behavior matches

• Examples:

• Reverse function

• Sort function

• isPrime

f : Σ* → Σ*

f
f

Input string

Output string

Decision Problem
• A further convenient restriction on output:

• Only consider decision problems

• A decision problem is a function
• Examples:

• Given a graph, is there a clique of size ?

• Given a number, is it prime?

• This restriction simplifies the study of computation, 
without losing much

f : Σ* → {0, 1}

k

Input string

True or False

Languages
• Language: any set of finite-length strings over an alphabet

• That is, any set
• Intuitively, a language is set of words over an alphabet

• Examples for

•

•

•

• One-to-one mapping between decision problem and language :

• if and only if

L Σ

L ⊆ Σ*

Σ = {0, 1}

L = ∅

L = Σ*

L = {1,01,001,0001,…, }

f L

f(s) = 1 s ∈ L

Influence of Chomsky
• We will study computation through the lens of languages

• Influence of linguist Chomsky on computation

• A grammars generates a language (akin to speaking)

• Any string in the language can be generated 
using the rules of the grammar

• A machine recognizes a language (akin to listening)

• If a given input string is in a language, the machine will

"accept" (output true), otherwise "reject" (output false)

Takeways: Computation & Languages
• Computation: manipulation of input to reach desired output (yes/no)

• Computational problem: specification of the input/output pairs

• Algorithm: step by step approach to find out if output is yes or no

• Language is just a set of strings that 
represent the "yes" instances of a  
decision problem

• e.g. all even length binary strings 
(is this binary string of even length?)

Input String

Yes/No

Finite State Automata

Simplest Form of Computation

Deterministic Finite Automata
• A machine recognizes a language (akin to listening)

• If a given input string is in a language, the machine will
"accept" (output true), otherwise "reject" (output false)

• Question. What language is recognized by this machine?

• Try some example strings

Definition of a Finite Automaton
A finite automaton is a 5-tuple , where

• is a finite set called the states,

• is a finite set called the alphabet,

• is the transition function,

• is the start state and is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σ → Q

qo ∈ Q F ⊆ Q

Language of a Machine
• The set of all strings accepted by a finite automaton is called the

language of machine , and is written .

• Say recognizes language

• We will define accepts more formally

• Intuitive it is the strings on which it reaches an accepting state

M
M L(M)

M L(M)

M w

What Language?

Automaton Computation
• Let be a finite automaton and let

 be a string where each . Then accepts if
there is a sequence of in such that

•

• for and

•

M = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ M w

r0, r1, …, rn Q

r0 = q0

δ(ri, wi+1) = ri+1 i = 0,1,…, n − 1

rn ∈ F

Extended Transition Function
• Let be a DFA

• Transition function is often extended to
 where is defined as the state the DFA

ends up in if it starts at and reads the string

• Alternate definition of accepts

M = (Q, Σ, δ, q0, F)

δ : Q × Σ → Q
δ* : Q × Σ* → Q δ*(q, w)

q w

M w ⟺ δ*(q0, w) ∈ F

Language of a Machine
• The set of all strings accepted by a finite automaton is called the

language of machine , and is written .

• Say recognizes language

M
M L(M)

M L(M)

L(M1) = {w | w contains at least one 1 and an even number of zeroes follow the last 1}

M1

M2

L(M2) = {w | w ∈ {a, b}* that starts and ends with the same symbol}

Regular Languages
• Definition. A language is called a regular language if some

deterministic finite automaton recognizes it.

• Thus, to show a language is regular, we must design a DFA that
recognizes it, that is,

• accepts

L M
L(M) = L

M w ⟺ w ∈ L

Practice with DFAs
• Show that the following languages are regular by drawing the state

diagram of a DFA that recognizes it:

• contains an even number of 1s
• contains the substring

{w ∈ {0,1}* | w }

{w ∈ {a, b}* | w aba }

Class Exercises
• Show that the following are regular :

• is a string of 0s and 1s containing an even number of 1s

• is a string of s and s containing the substring

L1 = {w | w }

L2 = {w | w a b aba }

