CS 361: Lecture 1 Handout

Shikha Singh

Sets, Relations and Functions

A set is a collection of distinct objects, called elements. For example, A = {1,2,3} is a set. A
set A is a subset of a set B, written A C B, if every element of A is also an element of B. For

two sets A and B, the Cartesian product is

Ax B={(a,b)|ac A, be B}

The empty set, denoted (), is the unique set containing no elements, i.e.,) = {}. The power set
of a set A, denoted P(A), is the set of all subsets of A, that is,

P(A) = {B| B C A}.

Relations and Functions. A relation R from a set A to a set B is a subset of A x B. If
(a,b) € R, we say that a is related to b by R, written a Rb.

A function f from a set A to a set B, written f : A — B, is a relation such that for all a € A,
there is exactly one b € B such that (a,b) € f. We typically write (a,b) € f as f(a) = b.

A function f : A — B is called one-to-one (or injective) if different elements of A map to different
elements of B. Formally, f is infective if and only if for all x,y € A such that f(z) = f(y), then
x = y. A function f: A — B is called onto (or surjective) if every element of B has at least one
pre-image in A. Formally, f is surjective if and only if for all b € B, there exists a € A such that

f(a) = b. A function is bijective or a bijection if it is both one-one and onto.

Finite and Countable Sets. A set S is finite if there is a bijection f : S — {1,2,...,n} for

some n € N. We call n the size of S, denoted as |S| = n. S is infinite if no such bijection exists.

An set S is countably infinite if there exists a bijection f : S — N. We say a set S is countable if it
is finite or infinite countably infinite. We say a set is uncountable if it is not countable. Example
of countable sets include the natural numbers N, the set of integers Z, etc and an example of an

uncountable set is the set of real numbers R. We will revisit countability later in the course.

Shikha Singh Page 1

CS 361: Lecture 1 Handout CS 361 Fall 2025

Strings and Languages

To represent the input data, we typically encode it in the form of a string from a finite alphabet.
An alphabet ¥ is defined as a finite set of symbols that we can use in our encoding. A string s is

a finite (possibly empty) sequence of symbols from ¥, that is, s = ajag - - - a,, where each a; € X.
A string over the binary alphabet 3 = {0,1} is called a binary string.
The length of a string x, denoted |z| is the number of symbols contained in the string.

Consider two strings ¢ = x122--- T, and y = Y192 - - Ym. We say strings x and y are equal if

and only if (1) n =m, and (2) ; = y; for each i =1,... n.

Operations on Strings. The basic operation on strings is concatenation. The concatenation
xy of two strings « and y is the string zy, that is, « followed by y. For example, CS5361 is the

concatenation of CS and 361.

Let x be a string. A string y is a substring of x if there exist strings v and v such that x = uyv.
In particular, when u = €, y is a prefiz of z; and when v = ¢ (so x = uy), y is called a suffix of
x. For example, CS is a prefix of CS5400 and 5400 is a suffix of CS5400.

For a string z over alphabet ¥, the reversal of x, denoted by ', is defined by

€ if x =¢,

TpTp_1 21 fx=x120-- 2y, forxy,xo,...,2, €.

Example. For strings z and y, (zy)® = yfz®.

Proof. If z = ¢, then ' = ¢ and hence (2y)f = yf* = yfie = y2R If y = ¢, then yf* = ¢

and hence (zy)F = 28 = ex® = yBz

Now, suppose x = x1Z2 - Ty, and y = y1y2 - - - Ypn, with m,n > 1. Then,

(2y)? = (z122 - Ty Yn) T = YnUn—1 - Y1ZmTm—1 - - 1 =yl k.

Encoding Input and Output. Let ¥ be an alphabet. We write £* to denote the set of all strings
over X. For example, {0,1}* = {¢,0,1,00,01,10,11,000,...} and {a}* = {¢, a,aqa,aaa,...}.

Shikha Singh Page 2

CS 361: Lecture 1 Handout CS 361 Fall 2025

Note that while ¥* is an infinite set, each string in it has finite length.

Given a set A of objects, an encoding is an injective (one-to-one) function that maps A to X*.
This ensures that no two objects have the same encoding. In this course, we often restrict to an

encoding over the binary alphabet.

Defining Computation. Once we encode the input and output data as finite strings, we can
begin to define computation. Intuitively, to specify a well-defined computational problem, we
need to provide an output for each input string. Thus, we will capture this specification as a
function f:X* — 3*.

B maps each string € ¥* to its reverse string. We say

For example, the function reverse(z) = x
a computation or algorithm “solves” a function f if its output on z is the same as f(z) for all

input strings z.

In this course, we further simplify and only consider decision problems, which have a “yes” or “no”
answer. In particular, a decision problem is a function f : ¥* — {0,1}. Examples of decision

problems include “does this graph have a clique of size k7 or “given a number, is it prime?”.

Languages to Represent Computation. A language L over alphabet ¥ is just a subset of 3%,

that is, L C ¥*. Intuitively, a language is just a set of words over an alphabet.

Example. For ¥ = {0,1}, example of languages include Ly = (), Ly = X* L3 =
{1,01,001,0001,...,}, etc.

There is a one-to-one mapping between a decision problem over an input encoded over alphabet
> and a language L over Y. In particular, we say L is language for the decision problem f if
f(z) =1if and only if x € L.

In this course, we will study computation through the terminology of languages due to the

influence of computational linguist Noam Chomsky on the field.

Shikha Singh Page 3

