CS 361: Theory of Computation Assignment 7 (due 10/29/2025) Instructor: Shikha Singh

Lagrangian Example 1975. Here and the Example 1975 In the Example 1975. Here are a solutions: https://www.overleaf.com/read/mpktnhcxvfyh#6210a2

Problem 1. Consider the problem of determining whether the language of a given DFA M is finite. Express this problem as a language and show that it is decidable.

Solution. \Box

Assignment 7

Problem 2. A language is prefix-free if no member is a proper prefix of another member. Let $PrefixFree_{REX} = \{R \mid R \text{ is a regular expression and } L(R) \text{ is prefix-free}\}$. Show that $PrefixFree_{REX}$ is decidable.

 \Box

Assignment 7

Problem 3. In class we proved that the power set of $\mathbb N$ is uncountable using proof by contradiction and a diagonalization argument. Using the same technique, prove that the set $\mathcal B$ of all infinite binary sequences is uncountable. An *infinite binary sequence* is an unending sequence of 0s and 1s.

Solution.

Assignment 7 4

Problem 4. (a) Show that $EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L \text{ is undecidable. You may assume that } ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \text{ is undecidable (Sipser, Theorem 5.13). Reduce from } ALL_{CFG}.$	
Solution.	
(b) Show that $\overline{EQ_{CFG}}$ is Turing-recognizable.	
Solution.	
(c) Is EQ_CFG Turing-recognizable? Justify your answer.	
Solution.	

Assignment 7 5

Problem 5. Say that a variable A in a CFG G is **useless** if there exists a derivation for every $w \in L(G)$ that does not use A. Consider the following language:

$${\rm USELESS_{CFG}} = \{ \langle G,A \rangle \ | \ A \ {\rm is \ a \ useless \ variable \ in} \ G \}.$$

Show that $USELESS_{CFG}$ is undecidable.

You may assume that $\mathsf{ALL}_{\mathsf{CFG}} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$ is undecidable (Sipser, Theorem 5.13). Reduce from $\mathsf{ALL}_{\mathsf{CFG}}$.

 \Box