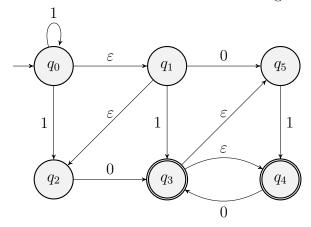
CS 361: Theory of Computation

Assignment 2 (due 09/17/2025)

Instructor: Shikha Singh

LATEX Source for Solutions: https://www.overleaf.com/read/phmptsqjwyxk#a69fe2

Problem 1. Consider the NFA N in the figure below and fill in the blanks below:



(a) What are the ε -closures of the sets of states $\{q_0\}$ and $\{q_1, q_3\}$, that is, $E(\{q_0\})$ and $E(\{q_1, q_3\})$ as defined in the equivalence proof of DFAs and NFAs.

Solution.
$$E(\{q_0\}) = \boxed{\{\text{Replace With Answer}\}}$$

 $E(\{q_1, q_3\}) = \boxed{\{\text{Replace With Answer}\}}$

(b) What set of states is the output of $\delta(\{q_0\}, 0)$ and $\delta(\{q_2, q_3\}, 1)$.

Solution.
$$\delta(\{q_0\}, 0) = \boxed{\{\text{Replace With Answer}\}}$$

 $\delta(\{q_2, q_3\}, 1) = \boxed{\{\text{Replace With Answer}\}}$

(c) Does the NFA accept the strings x = 011 and y = 101?

Solution. The NFA accepts/rejects x. The NFA accepts/rejects y.

Assignment 2

Problem 2. For the two languages below, give state diagrams of NFAs (with the specified number of states) as well as corresponding regular expressions. Assume $\Sigma = \{0, 1\}$.

- (a) The language $\{w \mid w \text{ contains an even number of 0s, or contains exactly two 1s}\}$. Give an NFA for this language with six states.
- (b) The language that contains a pair of 1s separated by an odd number of symbols (0s or 1s). Give an NFA with 4 states for this language.

Assignment 2

Closure Under Operations. Below is a solved example to show that regular languages are closed under the reverse operation. Follow a similar approach to solve **Problem 4**.

Problem 3. (Solved Example) For any string $w = w_1 w_2 \dots w_n$, the reverse of w, written w^R , is the string w in reverse order, that is, $w^R = w_n \dots w_2 w_1$. For any language L, let $L^R = \{w^R \mid w \in L\}$. Show that regular languages are closed under the reverse operation, that is, show that if L is regular, so is L^R .

Solution. Let M be the DFA recognizing L. We need to construct an NFA that recognizes L^R . We keep all the states in M and reverse the direction of all the δ arrows in N. We set the accept state of N to be the start state in M. Also, we introduce a new state s as the start state for N which goes to every accept state in M be an ε -transition.

Formally, let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts the regular language L. Define $N = (Q \cup \{s\}, \Sigma, \delta', s, \{q_0\})$, where $s \notin Q$, and δ' is defined below:

- $\delta'(s,\varepsilon) = F$;
- for all $q \in Q$ and for all $\sigma \in \Sigma$, $\delta'(q, \sigma) = \{ p \in Q \mid \delta(p, \sigma) = q \}$.

To prove correctness, we need to prove $L^R = L(N)$. There are two directions: first, if $w^R \in L^R$ then $w^R \in L(N)$. Since $w^R \in L^R$, there exists a $w \in L$ such that w^R is the reverse of w. Thus, M accepts w: that is, there exists a sequence of states q_0, q_1, \ldots, q_n in M such that $q_n \in F$ and each $q_{i+1} = \delta(q_i, w_{i+1})$. Since there is an ε -transition from s in N to q_n , on input $w^R = w_n \cdots w_1$, one computation branch in N starts at q_n and follows the reverse transitions of M, that is, on input $w_n \cdots w_i$ it goes through states q_{n-1}, \ldots, q_0 . Since q_0 is an accept state of N, it accepts w^R . The other direction showing $w^R \in L(N) \implies w \in L(M) \implies w^R \in L^R$ is analogous. \square

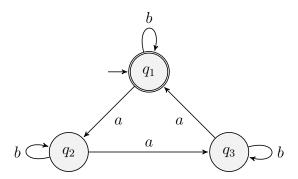
Assignment 2

Problem 4. Let $L \subseteq \Sigma^*$ be a regular language. Show that the following two languages are also regular.

$$\begin{split} & \text{SUFFIXES}(L) = \{x \in \Sigma^* \mid yx \in L \text{ for some } y \in \Sigma^* \} \\ & \text{PREFIXES}(L) = \{y \in \Sigma^* \mid yx \in L \text{ for some } x \in \Sigma^* \} \end{split}$$

Assignment 2 5

Problem 5. Use the state-elimination algorithm on a generalized non-deterministic finite automata (GNFA), (CONVERT(G), described on Page 73 in Sipser (Proof of Lemma 1.60) to convert the following finite automaton to a regular expression. Show your work as you eliminate each state. Refer to similar examples: Example 1.66 and 1.68 in the textbook (You may attach a clear hand-drawn image of your work.)



Solution.