CSCI 361 Lecture 9.
Context-Free Languages |

Shikha Singh

Announcements & Logistics

HW 3 due Wed (Oct 9)

Please ensure that any DFA/ Parse tree images attached are clear

You can use figure flags to ensure LaleX places them in the right spot
Hand in reading questions # 6 and pick up reading questions #7
Reminder: What | did Last Summer Colloguium tomorrow

CSCI 361 Midterm on Oct 22 (Tuesday):
In class exam /5 mins exam
Can bring your notes but no screens allowed
A textbook will be available for reference

WIll provide more details about format before exam

L ast [Ime

Wrapped up regular languages

Started context-free grammars

Joday and Coming Lectures

More on context-free languages and push-down automata
Less focus on automata than regular languages
Still good to know

Non-context-free pumping lemma

Regular Languages are Context-Free

- Let M = (0, 2,0, qy, F) be a DFA for the regular language L
» We can construct a CFG G for L as follows
» Make a variable Q; for each state g; € QO

- Foreach g;,q; € Q and a € X such that 6(g;, @) = g; a rule a

rule O; — a Q;
+ Make @, the start variable

. AddQ;, > ¢ifg, € F

Regular Grammars

- A CFG is regular if any occurrence of a variable on the RHS of a

rule 1s as the rightmost symbol

- |t a CFG s regular, there i1s a NFA that recognizes the same language
- O =VU{f} (A state for each variable plus an accept state)

- Rule A — aB becomes 6(A,a) = B

» Ifthereisa A —- athen 6(A,a) =f

CFG for this Language!?

+ CFGfor L= {a'b/c*|i=jorj=k)
+ Union of L; = {a'b'c’|i,j > 0} and L, = {a'b’c’ | i,j > 0}

Closure Properties of CFLs

« CFLs are closed under

- Union
- Concatenation

« Kleene star

- Not closer under complement and intersection!

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

NB: Assume that V; — 21, Vo — 229 are disjoint.

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

Concatenation: L(G;)L(G,) is generated by
RiU Ry U {S — 3152}

NB: Assume that V; — 21, Vo — 229 are disjoint.

Closure Properties of CFLs

Given Gl — (Vi, 21, Rl, Sl)
GZ — (‘/27 227 RQ) SQ)

Union: L(G1) U L(G5) is generated by
R1UR2U{S—> Sl,S—> SQ}

Concatenation: L(G;)L(G,) is generated by
RiU Ry U {S — 3152}

Kleene x: L(G1)* is generated by
Rl U {S — 6‘3 — Sls}

Automata for CFGs

- Regular Languages : Finite Automata

- Context-free languages: !

Pushdown Automata

Basically an NFA with a stack (pushdown store)

- The stack can consist of unlimited number symbols but can only be

read and altered at the top:

- Can only pop symbol from top or push symbol to top

Input la|b|b | a|bl|a

reading head ____________,

(L to R only,
one symbol at a F.C. /

time, or stays put)

Stack

pushdown store head
can push (add symbols)
or pop (remove and

S S OIS

check symbols)

Pushdown Automata lransitions

» Transitions of a PDA have two parts:
- State transition and stack manipulation (push/pop)

» If in state p reading input symbol a and b on the stack, replace b

with ¢ on the stack and enter state g

* (p,a,b) = (q,c¢)
« 0:0OX2Z XI', > LPOXT),)

» In state diagram arrow goes from p — g with label a, b — ¢

Formal Definition: PDA

» A pushdown automaton is a six tuple M = (Q, 2,1, 9, gof') where
+ (O Is the finite set of states

-+ 2 Is a finite alphabet (the input symbols)

- 1" is a finite tape alphabet (the stack symbols)

+ 0:0X2Z XI', = PO XT),) is the transition function

* o € Q isthe initial state and F C Q is the set of accept states

Example PDA

- Consider the language over X = {[,]} of all strings made up of

correctly nested brackets
- CFG for this language: S — € | [S] | S

- Now lets create a push-down automata for this language

- What to store on the stack?

Exam

ble PDA for Balancec

Recall: A transition of the form a, b = z
means "If the current input symbol Is a and
the current stack symbol is b, then follow this
transition, pop b, and push the string z”

Brackets

PDA Acceptance: Informal

- A PDA accepts an input string w if there 1s a computation that:
- starts in the start state and empty stack
* has a sequence of valid transitions

- at least one computation branch ends in an accept state with an
empty stack

- A PDA computation branch "dies off" if

* no transition matches the input (as in an NFA)
* no rule matches the stack states

* any combination of the above

- Language of a PDA: set of all strings that are accepted

PDA More Examples

. L=1{0"1"|n>0)

0,€—0
g,—$
O

1,0—-€

1,0—€
e, $—¢€ 13

PDA More Exam

- PDAfor L= {a'b/ck|i=jori=k)

Guess which case

occurs: #a = #b
or #b = #c

dles

PDA More Examples

- PDAfor L= {a'b/ck|i=jori=k)

PDA More Examples

- PDAfor L= {a'b/ck|i=jori=k)

Practice Problem

. Draw a PDA for L = {ww® | w € {0,1}%*)

- Solution is In the book (Sipser 2.1)

Fquivalence: CFG <= PDA

Theorem. A language Is context-free if and only it Is
recognized by some (non-deterministic) pushdown automaton.

Note: Unlike DFA and NFA, non-deterministic PDAs are more
powerful than deterministic PDAs.

Example: CFG => PDA

S — alb|b
T —Tale

