
CSCI 361 Lecture 9:
Context-Free Languages II

Shikha Singh

Announcements & Logistics
• HW 3 due Wed (Oct 9)

• Please ensure that any DFA/ Parse tree images attached are clear
• You can use figure flags to ensure LaTeX places them in the right spot

• Hand in reading questions # 6 and pick up reading questions #7

• Reminder: What I did Last Summer Colloquium tomorrow

• CSCI 361 Midterm on Oct 22 (Tuesday):
• In class exam 75 mins exam
• Can bring your notes but no screens allowed
• A textbook will be available for reference
• Will provide more details about format before exam

Last Time
• Wrapped up regular languages
• Started context-free grammars

Today and Coming Lectures
• More on context-free languages and push-down automata

• Less focus on automata than regular languages
• Still good to know

• Non-context-free pumping lemma

Regular Languages are Context-Free
• Let be a DFA for the regular language

• We can construct a CFG for as follows

• Make a variable for each state

• For each and such that a rule a

rule

• Make the start variable

• Add if

M = (Q, Σ, δ, q0, F) L

G L

Qi qi ∈ Q

qi, qj ∈ Q a ∈ Σ δ(qi, a) = qj

Qi → a Qj

Q0

Qi → ε qi ∈ F

Regular Grammars
• A CFG is regular if any occurrence of a variable on the RHS of a

rule is as the rightmost symbol

• If a CFG is regular, there is a NFA that recognizes the same language

• (A state for each variable plus an accept state)

• Rule becomes

• If there is a then

Q = V ∪ {f}

A → aB δ(A, a) = B

A → a δ(A, a) = f

CFG for this Language?
• CFG for

• Union of and

L = {aibjck | i = j or j = k}

L1 = {aibicj | i, j ≥ 0} L2 = {aibjcj | i, j ≥ 0}

Closure Properties of CFLs
• CFLs are closed under

• Union

• Concatenation

• Kleene star

• Not closer under complement and intersection!

Closure Properties of CFLs

Closure Properties of CFLs

Closure Properties of CFLs

Automata for CFGs
• Regular Languages : Finite Automata

• Context-free languages: ??

Pushdown Automata
• Basically an NFA with a stack (pushdown store)

• The stack can consist of unlimited number symbols but can only be
read and altered at the top:

• Can only pop symbol from top or push symbol to top

Pushdown Automata Transitions
• Transitions of a PDA have two parts:

• State transition and stack manipulation (push/pop)

• If in state reading input symbol and on the stack, replace
with on the stack and enter state

•

•

• In state diagram arrow goes from with label

p a b b
c q

(p, a, b) → (q, c)

δ : Q × Σε × Γε → 𝒫(Q × Γε)

p → q a, b → c

Formal Definition: PDA
• A pushdown automaton is a six tuple where

• is the finite set of states

• is a finite alphabet (the input symbols)

• is a finite tape alphabet (the stack symbols)

• is the transition function

• is the initial state and is the set of accept states

M = (Q, Σ, Γ, δ, q0F)

Q

Σ

Γ

δ : Q × Σε × Γε → 𝒫(Q × Γε)

q0 ∈ Q F ⊆ Q

Example PDA
• Consider the language over of all strings made up of

correctly nested brackets

• CFG for this language:

• Now lets create a push-down automata for this language

• What to store on the stack?

Σ = {[,]}

S → ε | [S] | SS

Example PDA for Balanced Brackets

Recall: A transition of the form a, b → z
means “if the current input symbol is a and

the current stack symbol is b, then follow this
transition, pop b, and push the string z”

PDA Acceptance: Informal
• A PDA accepts an input string if there is a computation that:

• starts in the start state and empty stack

• has a sequence of valid transitions

• at least one computation branch ends in an accept state with an
empty stack

• A PDA computation branch "dies off" if

• no transition matches the input (as in an NFA)

• no rule matches the stack states

• any combination of the above

• Language of a PDA: set of all strings that are accepted

w

PDA More Examples
• L = {0n1n | n ≥ 0}

PDA More Examples
• PDA for L = {aibjck | i = j or i = k}

Guess which case
occurs: #a = #b

or #b = #c

PDA More Examples
• PDA for L = {aibjck | i = j or i = k}

PDA More Examples
• PDA for L = {aibjck | i = j or i = k}

Practice Problem
• Draw a PDA for

• Solution is in the book (Sipser 2.1)

L = {wwR | w ∈ {0,1}*}

Equivalence: CFG PDA⟺

Theorem. A language is context-free if and only it is
recognized by some (non-deterministic) pushdown automaton.

Note: Unlike DFA and NFA, non-deterministic PDAs are more
powerful than deterministic PDAs.

Example: CFG PDA⟹

