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Announcements & Logistics
• HW 3 due Wed (Oct 9)

• Please ensure that any DFA/ Parse tree images attached are clear
• You can use figure flags to ensure LaTeX places them in the right spot

• Hand in reading questions # 6 and pick up reading questions #7 

• Reminder:  What I did Last Summer Colloquium tomorrow

• CSCI 361 Midterm on Oct 22 (Tuesday):  
• In class exam 75 mins exam 
• Can bring your notes but no screens allowed
• A textbook will be available for reference
• Will provide more details about format before exam



Last Time
• Wrapped up regular languages
• Started context-free grammars



Today and Coming Lectures
• More on context-free languages and push-down automata

• Less focus on automata than regular languages
• Still good to know

• Non-context-free pumping lemma



Regular Languages are Context-Free
• Let  be a DFA for the regular language 

• We can construct a CFG  for  as follows

• Make a variable  for each state 

• For each  and  such that  a rule a 

rule 

• Make  the start variable 

• Add  if 

M = (Q, Σ, δ, q0, F) L

G L

Qi qi ∈ Q

qi, qj ∈ Q a ∈ Σ δ(qi, a) = qj

Qi → a Qj

Q0

Qi → ε qi ∈ F



Regular Grammars
• A CFG is regular if any occurrence of a variable on the RHS of a 

rule is as the rightmost symbol

• If a CFG is regular, there is a NFA that recognizes the same language

•  (A state for each variable plus an accept state)

• Rule  becomes 

• If there is a  then   

Q = V ∪ {f}

A → aB δ(A, a) = B

A → a δ(A, a) = f



CFG for this Language?
• CFG for  

• Union of  and 

L = {aibjck | i = j or j = k}

L1 = {aibicj | i, j ≥ 0} L2 = {aibjcj | i, j ≥ 0}



Closure Properties of CFLs
• CFLs are closed under 

• Union

• Concatenation 

• Kleene star

• Not closer under complement and intersection!



Closure Properties of CFLs



Closure Properties of CFLs



Closure Properties of CFLs



Automata for CFGs
• Regular Languages :  Finite Automata 

• Context-free languages:   ??



Pushdown Automata
• Basically an NFA with a stack (pushdown store)

• The stack can consist of unlimited number symbols but can only be 
read and altered at the top:

• Can only pop symbol from top or push symbol to top 



Pushdown Automata Transitions
• Transitions of a PDA have two parts:

• State transition and stack manipulation (push/pop)

• If in state  reading input symbol  and  on the stack, replace  
with  on the stack and enter state  

•

•

• In state diagram arrow goes from  with label 

p a b b
c q

(p, a, b) → (q, c)

δ : Q × Σε × Γε → 𝒫(Q × Γε)

p → q a, b → c



Formal Definition:  PDA
• A pushdown automaton is a six tuple  where 

•  is the finite set of states

•  is a finite alphabet (the input symbols)

•  is a finite tape alphabet (the stack symbols)

•  is the transition function

•  is the initial state and  is the set of accept states

M = (Q, Σ, Γ, δ, q0F)

Q

Σ

Γ

δ : Q × Σε × Γε → 𝒫(Q × Γε)

q0 ∈ Q F ⊆ Q



Example PDA
• Consider the language over  of all strings made up of 

correctly nested brackets

• CFG for this language:  

• Now lets create a push-down automata for this language

• What to store on the stack?

Σ = {[, ]}

S → ε | [S] | SS



Example PDA for Balanced Brackets

Recall:  A transition of the form a, b → z 
means “if the current input symbol is a and 

the current stack symbol is b, then follow this 
transition, pop b, and push the string z”



PDA Acceptance:  Informal 
• A PDA accepts an input string  if there is a computation that:

• starts in the start state and empty stack

• has a sequence of valid transitions

• at least one computation branch ends in an accept state with an 
empty stack

• A PDA computation branch "dies off" if

• no transition matches the input (as in an NFA)

• no rule matches the stack states

• any combination of the above

• Language of a PDA: set of all strings that are accepted

w



PDA More Examples
• L = {0n1n | n ≥ 0}



PDA More Examples
• PDA for  L = {aibjck | i = j or i = k}

Guess which case 
occurs: #a = #b  

or #b = #c



PDA More Examples
• PDA for  L = {aibjck | i = j or i = k}



PDA More Examples
• PDA for  L = {aibjck | i = j or i = k}



Practice Problem
• Draw a PDA for  

• Solution is in the book (Sipser 2.1)

L = {wwR | w ∈ {0,1}*}



Equivalence:  CFG  PDA⟺

Theorem.  A language is context-free if and only it is 
recognized by some (non-deterministic) pushdown automaton.

Note:  Unlike DFA and NFA, non-deterministic PDAs are more 
powerful than deterministic PDAs.



Example:  CFG  PDA⟹


