CSCI| 36| Lecture 8:
Context-Free Grammars

Shikha Singh

Announcements & Logistics

HW 3 out, due Oct 9 (next VWedqd)

Slightly longer: 6 questions but with subparts
Recommend finishing Q |-3 by this Wed, 4-6 next week

—appy to provide feedback on write up so you can revise solutions

Hand in reading questions # 5 and pick up reading questions #6

What | did last summer colloguium this Friday

Sign up If you would like to present

https://forms.gle/Krg |1/ 1gkU/gTpHe9

https://forms.gle/Krg1f71gkU7qTpHe9

L ast [Ime

Discussed alternate tools for proving languages are not regular
Pumping lemma
Closure properties
Important to know how to use both approaches: Myhill-Nerode and PL

Depending on the language, one might be easier than other

Review PL Steps

Proving L Is not regular using pumping lemma

Assume L is regular; let p be the pumping lemma given by lemma

Consider a specific string w € L of length at least p such that

for every possible

| xp| < p and

dartition of w into x, y, z satisfying

y| >0

there exists an i such that xy'z & L

The above steps provide a contradiction to L being regular by PL

HW 4 Problem 5

Show that a language is not regular and show that it satisfies
conditions of the pumping lemma

| eftovers: Regular or Not

Question. Is the language L = {(ab)' o (ab)' | i > 0} regular?

L eftovers: Closure Question

Question. Are all subsets of regular languages also regular?

Finite Automata Applications

» Lexical analysis in compillers
+ Networking protocols and routing
» Clircurt design and event-driven programming

» Synchronization of distributed devices

Firing Squad Problem

- Cellular automata: finite automata where each cell changes state

based on current state and state of neighbors

- https//www.youtube.com/watchiv=xV |aKUdI||U

https://www.youtube.com/watch?v=xV1aKUdlljU

All Languages

Recursively-Enumerable Languages
Recognized by Turing Machines

Decidable Languages

Decidable by Turing Machine
0"1m2"

Context-free Languages

Push-down Automaton
o1, wwh

Regular Languages

We are here

Finite Automaton
1*0*, (0 U 1)*0

All Languages

Recursively-Enumerable Languages
Recognized by Turing Machines

Decidable Languages

Decidable by Turing Machine
01’111’121’1

Today Context-free Languages

Push-down Automaton
0”1, wwh

Regular Languages

Finite Automaton
1*0*, (0 U 1)*0

Context-Free Grammar

- Generative model to specify the next class of languages

» First used In the study of natural/human languages

» Applications in specification & compilation of programming languages
- Syntax of a PL can be specified using its grammar

+ Compller to check correct syntax uses a parser to check

against valid rules

Example CFG

+ CFGS consists of a collection of substitution rules, called productions
Left-hand side of a rule has a single variable (or non-terminal)
Right-hand side can consist of variables and terminals

- Conventions; upper-case letters for variables/non-terminals, lower-

case letters for terminals,

- § for start variable, usually on the LHS of the topmost rule

Fxample: § —> 08§ 1

S - ¢

Derivations to Generarte Strings

A sequence of substitutions starting with the start variable and

ending In a string of terminals Is a derivation

» For example, the derivation of 000111 using the grammar
S—>0S51

S — ¢

- S = 051 = 00511 = 000S111 = 000111

- (Can you guess the language of this grammar?
- L={0"1"| n >0}

» Thus, CFGS are more powerful than regular exp/DFA/NFAS

[anguage of a Grammar

- All strings that can be generated using the rules of a grammar

constrtute the language of the grammar

 Any language that can be generated by some context-free grammar

s called a context-free language

Parse |rees

- Rooted trees that represent a derivation
- Root: start variable, leaves: derived string
- Children of nodes represent the rule that is being applied

+ Will be useful in discussing context-free languages

Formal Definition: CFG

A context-free grammar G is a quadruple (V, 2, R, §) where
+ Vs afinite set called variables

-+ 2 Is a finite set (disjoint from V) called the terminals

* R is a finite subset of V X (V U 2)*called rules, and

» S (the start symbols) is a element of V

» ForanyA e Vandue (VUX)* wewrite A - uif(A,u) €R

[anguage of a Grammar

- fv,w,yv e (VUZX*)and A — w s a rule, then we say uAv vyields

uwyv and write uAv = uwy

*

+ We say u derives v denoted u = v, If there exists a sequence
Uy, ..., U such that
M=>u1:‘>-~uk=>v

- The language of the grammar G is L(G) = {w | § = w}

Examples of CFGs

Describe a CFG for the following languages
- L={w e {a,b}* | whasthe same # of a's and b's}
- L={we{ab}* | |w|iseven }

- L={we {0,1}* | w=wf)

Solutions of CFGs

- L={we {a,b}* | whasthe same # of a's and b's}
S — 8§

S — aSb

S — bSa

S — ¢

- L={we{ab}* | |w|iseven }

S— al' | bT | €

T — aS|bS

- L={we{0,1}*|w=wk}

S—>aSa|aSb|al|b]|e

Correctness Proof: Induction

To prove: L(G) = {w | w has an equal # of a's and b's} 5— 55
S — aSb
(=>) Consider any w € L(G) and induct on the length k
o S — bSa
of derivation of w
S — ¢

(a) k =1then § = € and e has equal # of a's and b's
(b) k > 1 then either § = §S ;" Xy

or§ = aSh => axb

or§ = bSa =*> aya

In each case, § derives x, y in less than k steps and by IH, they must

have equal number of a's and b's

Correctness Proof: Induction

To prove: L(G) = {w | w has an equal # of a's and b's} 5 — 53
| | S — aSb
(<) Consider any w with equal # of a's and b's
S — bSa
Can show w € L(G) by induction on |w| S ¢

(@) |[w|=0thenw =¢

(b) |w| =k+2 (as |w| must be even)

Can divide by 4 cases depending on first and last symbol of w, In

each case show that the smaller string can be derived by IH
Case (i) and (i) w = axb or w = bxa

Case (iii) and (iv) w = axa and w = bxb

Grammar for English

A grammar for the English language tells us whether a sentence is "well

formed". For example:

<Sentence> — <NounPhrase><VerbPhrase>
<NounPhrase> — <Article><NounUnit>
<NounUnit> = <Noun> | <Adjective><NounUnit>
<VerbPhrase> = <Verb> <NounPhrase>

<Article> = a | the

<Adjective> — big | small | black | green | colorless
<Noun> — dog | cat | mouse | bug | Ideas
<Verb> — |oves | chases | eats | sleeps

Some generated sentences:

The black dog loves the small cat

A cat chases a mouse

The colorless bug chases the green ideas

-xample: Programming Language Syntax

<program> — <block>

<block> = { <command-list> }

<command-list> = &

<command-list> = <command> <command-list>
<command> — <block>

<command> — <assignment>

<command> — <one-armed-conditional>
<command> — <two-armed-conditional>
<command> — <while-loop>

<assignment> — <var> := <expr>
<one-armed-conditional> — if <expr> <command>
<two-armed-conditional> — if <expr> <command> else <command>
<while-loop> — while <expr> <command>

Possible generated program

{x:=4
while x >1
X =x-1}

Parsing

- A compller for a programming language takes an input program In

the language and converts it to a form more suitable for execution

- Jo do so, the compiler creates a parse tree of the code to be

compiled using its CFG: this process is called parsing

Regular Languages are Context-Free

» Every regular language can be described by some CFG

+ Takeaway: CFGs are more "expressive” In power than regular

expressions

Regular Languages are Context-Free

- Let M = (0, 2,0, qy, F) be a DFA for the regular language L
» We can construct a CFG G for L as follows
» Make a variable Q; for each state g; € QO

- Foreach g;,q; € Q and a € X such that 6(g;, a) = g; a rule
O, —a Q;addarule Q; = a O

+ Make @, the start variable

. AddQ;, > ¢ifg, € F

Regular Languages are Context-Free

a | | b
b a

a b
b @ la

Regular Grammars

- A CFG is regular if any occurrence of a variable on the RHS of a

rule 1s as the rightmost symbol

- |t a CFG is regular, there is a DFA that recognizes the same language
- O =VU{f} (A state for each variable plus an accept state)

- Rule A — aB becomes 6(A,a) = B

» Ifthereisa A —- athen 6(A,a) =f

Automata for CFGs

- Regular Languages : Finite Automata

- Context-free languages: !

Pushdown Automata

- Basically an NFA with a stack (pushdown store)

- The stack can consist of unlimited number symbols but can only be

read and altered at the top:

- Can only pop symbol from top or push symbol to top

