
CSCI 361 Lecture 8:
Context-Free Grammars

Shikha Singh

Announcements & Logistics
• HW 3 out, due Oct 9 (next Wed)

• Slightly longer: 6 questions but with subparts
• Recommend finishing Q1-3 by this Wed, 4-6 next week
• Happy to provide feedback on write up so you can revise solutions

• Hand in reading questions # 5 and pick up reading questions #6

• What I did last summer colloquium this Friday
• Sign up if you would like to present
• https://forms.gle/Krg1f71gkU7qTpHe9

https://forms.gle/Krg1f71gkU7qTpHe9

Last Time
• Discussed alternate tools for proving languages are not regular

• Pumping lemma
• Closure properties

• Important to know how to use both approaches: Myhill-Nerode and PL
• Depending on the language, one might be easier than other

Review PL Steps
• Proving is not regular using pumping lemma

• Assume is regular, let be the pumping lemma given by lemma

• Consider a specific string of length at least such that

• for every possible partition of into satisfying

• and

• there exists an such that

• The above steps provide a contradiction to being regular by PL

• HW 4 Problem 5
• Show that a language is not regular and show that it satisfies

conditions of the pumping lemma

L

L p

w ∈ L p

w x, y, z

|xp | ≤ p |y | > 0

i xyiz ∉ L

L

Question. Is the language regular?L = {(ab)i ∘ (ab)i | i ≥ 0}

Leftovers: Regular or Not

Question. Are all subsets of regular languages also regular?

Leftovers: Closure Question

• Lexical analysis in compilers

• Networking protocols and routing

• Circuit design and event-driven programming

• Synchronization of distributed devices

Finite Automata Applications

• Cellular automata: finite automata where each cell changes state
based on current state and state of neighbors

• https://www.youtube.com/watch?v=xV1aKUdlljU

Firing Squad Problem

https://www.youtube.com/watch?v=xV1aKUdlljU

• Generative model to specify the next class of languages

• First used in the study of natural/human languages

• Applications in specification & compilation of programming languages

• Syntax of a PL can be specified using its grammar

• Compiler to check correct syntax uses a parser to check
against valid rules

Context-Free Grammar

• CFGS consists of a collection of substitution rules, called productions

• Left-hand side of a rule has a single variable (or non-terminal)

• Right-hand side can consist of variables and terminals

• Conventions: upper-case letters for variables/non-terminals, lower-
case letters for terminals,

• for start variable, usually on the LHS of the topmost rule

• Example:

S

S → 0 S 1
S → ε

Example CFG

• A sequence of substitutions starting with the start variable and
ending in a string of terminals is a derivation

• For example, the derivation of using the grammar

•

• Can you guess the language of this grammar?

•

• Thus, CFGS are more powerful than regular exp/DFA/NFAs

000111
S → 0 S 1
S → ε

S ⟹ 0S1 ⟹ 00S11 ⟹ 000S111 ⟹ 000111

L = {0n1n | n ≥ 0}

Derivations to Generarte Strings

• All strings that can be generated using the rules of a grammar
constitute the language of the grammar

• Any language that can be generated by some context-free grammar
is called a context-free language

Language of a Grammar

• Rooted trees that represent a derivation

• Root: start variable, leaves: derived string

• Children of nodes represent the rule that is being applied

• Will be useful in discussing context-free languages

Parse Trees

• A context-free grammar is a quadruple where

• is a finite set called variables

• is a finite set (disjoint from) called the terminals

• is a finite subset of called rules, and

• (the start symbols) is a element of

• For any and , we write if

G (V, Σ, R, S)

V

Σ V

R V × (V ∪ Σ)*

S V

A ∈ V u ∈ (V ∪ Σ)* A → u (A, u) ∈ R

Formal Definition: CFG

• If and is a rule, then we say yields
 and write

• We say derives denoted , if there exists a sequence
 such that

• The language of the grammar is

v, w, v ∈ (V ∪ Σ*) A → w uAv
uwv uAv ⟹ uwv

u v u
*

⟹ v
u1, …, uk

u ⟹ u1 ⟹ ⋯uk ⟹ v

G L(G) = {w | S
*

⟹ w}

Language of a Grammar

Describe a CFG for the following languages

•

•

•

L = {w ∈ {a, b}* | w has the same # of a's and b's}

L = {w ∈ {a, b}* | |w | is even }

L = {w ∈ {0,1}* | w = wR}

Examples of CFGs

•

•

•

L = {w ∈ {a, b}* | w has the same # of a's and b's}

L = {w ∈ {a, b}* | |w | is even }
S → aT | bT | ε
T → aS |bS

L = {w ∈ {0,1}* | w = wR}

Solutions of CFGs

S → aSa | aSb | a | b | ε

S → SS
S → aSb
S → bSa
S → ε

To prove:

() Consider any and induct on the length
of derivation of

(a) then and has equal # of a's and b's

(b) then either

or

or
In each case, derives in less than steps and by IH, they must
have equal number of a's and b's

L(G) = {w | w has an equal # of a's and b's}

⟹ w ∈ L(G) k
w

k = 1 S ⟹ ε ε

k > 1 S ⟹ SS
*

⟹ xy

S ⟹ aSb
*

⟹ axb

S ⟹ bSa
*

⟹ aya
S x, y k

Correctness Proof: Induction
S → SS
S → aSb
S → bSa
S → ε

To prove:

() Consider any with equal # of a's and b's

Can show by induction on

(a) then
(b) (as must be even)

Can divide by 4 cases depending on first and last symbol of , in
each case show that the smaller string can be derived by IH

Case (i) and (ii) or

Case (iii) and (iv) and

L(G) = {w | w has an equal # of a's and b's}

⇐ w

w ∈ L(G) |w |

|w | = 0 w = ε
|w | = k + 2 |w |

w

w = axb w = bxa

w = axa w = bxb

Correctness Proof: Induction
S → SS
S → aSb
S → bSa
S → ε

A grammar for the English language tells us whether a sentence is "well
formed". For example:

<Sentence> → <NounPhrase><VerbPhrase>
<NounPhrase> → <Article><NounUnit>
<NounUnit> → <Noun> | <Adjective><NounUnit>
<VerbPhrase> → <Verb> <NounPhrase>
<Article> → a | the
<Adjective> → big | small | black | green | colorless
<Noun> → dog | cat | mouse | bug | ideas
<Verb> → loves | chases | eats | sleeps

Grammar for English

Some generated sentences:
The black dog loves the small cat
A cat chases a mouse
The colorless bug chases the green ideas

<program> → <block>
<block> → { <command-list> }
<command-list> → ԑ
<command-list> → <command> <command-list>
<command> → <block>
<command> → <assignment>
<command> → <one-armed-conditional>
<command> → <two-armed-conditional>
<command> → <while-loop>
<assignment> → <var> := <expr>
<one-armed-conditional> → if <expr> <command>
<two-armed-conditional> → if <expr> <command> else <command>
<while-loop> → while <expr> <command>

Example: Programming Language Syntax

Possible generated program

{ x := 4
 while x >1
 x := x -1 }

Parsing
• A compiler for a programming language takes an input program in

the language and converts it to a form more suitable for execution

• To do so, the compiler creates a parse tree of the code to be
compiled using its CFG: this process is called parsing

Regular Languages are Context-Free
• Every regular language can be described by some CFG

• Takeaway: CFGs are more "expressive" in power than regular
expressions

Regular Languages are Context-Free
• Let be a DFA for the regular language

• We can construct a CFG for as follows

• Make a variable for each state

• For each and such that a rule

 add a rule

• Make the start variable

• Add if

M = (Q, Σ, δ, q0, F) L

G L

Qi qi ∈ Q

qi, qj ∈ Q a ∈ Σ δ(qi, a) = qj

Qi → a Qj Qi → a Qj

Q0

Qi → ε qi ∈ F

Regular Languages are Context-Free

Regular Grammars
• A CFG is regular if any occurrence of a variable on the RHS of a

rule is as the rightmost symbol

• If a CFG is regular, there is a DFA that recognizes the same language

• (A state for each variable plus an accept state)

• Rule becomes

• If there is a then

Q = V ∪ {f}

A → aB δ(A, a) = B

A → a δ(A, a) = f

Automata for CFGs
• Regular Languages : Finite Automata

• Context-free languages: ??

Pushdown Automata
• Basically an NFA with a stack (pushdown store)

• The stack can consist of unlimited number symbols but can only be
read and altered at the top:

• Can only pop symbol from top or push symbol to top

