# CSCI 361 Lecture 6: Verifying Regularity

Shikha Singh

#### Announcements & Logistics

- Recap/Questions
  - Any questions from Chapter I.3 (Regular expressions)?
- HW 2 is due this Wed at 10 pm on Gradescope
  - Questions about regular expressions and how to convert between regular expressions and NFA/DFA
- Few reminders about assignment submissions:
  - Must select pages for each question
  - Must use the LaTeX template provided
  - Attaching images: please crop and attach *in place*

#### Overview So Far

- Simple model of computation: finite automata
  - DFA  $\iff$  NFA  $\iff$  Regular expression
- Simplest class of decision problems: regular languages
- A language L is regular iff
  - Exists a DFA M such that L(M) = L, or
  - Exists a NFA N such that L(N) = L, or
  - Exists a regular expression R such that L(R) = L

## NFAs to Regular Expression

• Every NFA can be converted to an equivalent regular expression



#### Adjacent paths: concatenation

#### This Week

- Move on to non-regular languages
- Techniques to prove a language is not regular:
  - Myhill-Nerode theorem (not in textbook)
  - Pumping Lemma (textbook approach)

# Not All Languages Are Regular

- Any language does not a DFA that recognizes it is not-regular
- How we do **prove no such DFA** exists?
  - First example of an impossibility results in this class
  - Many more to come
- Intuitively, any decision problem that requires *finite* memory "to solve" is regular
- **Question.** Are finite languages regular?
  - $L \subseteq \Sigma^*$  and |L| is finite
  - All finite languages are regular
- Given an infinite language, how do we know its regular?

# All Finite Languages are Regular

- **Theorem.** All finite languages are regular.
- $L = \{w_1, ..., w_n\}$  for some  $n \in \mathbb{N}$
- Let  $L_i = \{w_i\}$  for each  $i \in \{1, \dots, n\}$
- $L = \bigcup_{i=1}^{n} L_i$
- Claim I. Each  $L_i$  is regular.
- Claim 2. A finite union of regular languages is regular.
- Using Claim I and 2, L is regular

# Infinite Regular Languages

- Have seen many infinite regular languages
- What do they have in common?

#### Structure of Infinite Regular Languages

• Which of these are responsible for going from finite to infinite?



## Loops in DFA: Intuition

- Consider the DFA M's transitions on an input string w
- It enters some states  $q_0, \ldots, q_1, q_2, \ldots, q_n$
- Question. If there is a "loop" what does that mean about the states visited?

- Now suppose two different strings x, y bring M to the same state q
- Consider attaching the same suffix z to both
- Question. What can we say about the state M is in after reading input string xz versus after reading input string yz?

## Indistinguishability (DFA)

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA. Let x, y be any string over  $\Sigma$ .

**Definition.** x indistinguishable to y with respect to M, denoted  $x \sim_M y$  if and only if  $\delta^*(q_0, x) = \delta^*(q_0, y)$  (i.e., the state reached by M on x is the same as the state reached by M on y)

**Corollary.** If  $x \sim_M y$  then for all  $z \in \Sigma^*$ , then  $xz \in L(M) \iff yz \in L(M)$ 

## Indistinguishability (Languages)

Let L be any language over an alphabet  $\Sigma$ .

**Definition.** *x* indistinguishable to *y* with respect to *L*, denoted  $x \equiv_L y$  if and only if for all  $z \in \Sigma^*$ , we have that  $xz \in L \iff yz \in L$ 

**Problem 5 in HW 2:**  $\equiv_L$  is an equivalence relation over  $\Sigma^*$ 

Thus,  $\equiv_L partitions \Sigma^*$  into equivalence classes.

# Distinguishing Suffixes

- Every string in the same equivalence class [x] of  $\equiv_L$  are indistinguishable with each other
- Two strings  $x, y \in \Sigma^*$  are in different equivalence iff they are **distinguishable** 
  - Can find a suffix  $z \in \Sigma^*$  that distinguishes them, that is,  $xz \in L$ and  $yz \notin L$  or  $xz \notin L$  and  $yz \in L$
  - **Question.** Suppose  $x \in L$  and  $y \notin L$ , are they distinguishable?

•

# Indistinguishability (Languages)

• Example.

 $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$ 

- Question. Regular expression for *L*?
- **Problem.** Find the equivalence classes of the relation  $\equiv_L$ .

#### Minimal DFA

• Example.

 $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$ 



## Indistinguishability DFA vs Languages

• Claim. If  $x \sim_M y$ , then  $x \equiv_{L(M)} y$ .

## Minimal DFA

- Claim. If a language L over  $\Sigma$  has k equivalence classes defined by  $\equiv_L$ , then any DFA for L must have at least k states.
- **Corollary.** If a DFA *M* for *L* has number of states equal to the number of equivalence classes of  $\equiv_L$  then such a DFA is minimal.

## Myhill-Nerode Theorem

Let L be a language over  $\Sigma^*$ , then L is regular **if and only if** the relation  $\equiv_L$  over  $\Sigma^*$  has a finite number of equivalence classes.

## Myhill-Nerode Theorem

Let L be a language over  $\Sigma^*$ , then L is regular **if and only if** the relation  $\equiv_L$  over  $\Sigma^*$  has a finite number of equivalence classes.

**Necessary condition.** For L to be regular, it must have finitely many equivalence classes. Equivalently, if  $\equiv_L$  over  $\Sigma^*$  has an infinite number of equivalence classes, then L cannot be regular.

**Sufficient condition.** If  $\equiv_L$  has finitely many equivalence classes, then L must be regular.

# Proving Non Regularity

- Myhill-Nerode theorem says that any language that has infinitely many equivalence classes with respect to  $\equiv_L$  is not regular
- Typically, we don't need to find all of equivalence classes
- Sufficient to find an infinite subset of strings that are mutually distinguishable

# Fooling Sets

**Definition.** A set of strings  $S \subseteq \Sigma^*$  is a **fooling set** with respect to a language  $L \subseteq \Sigma^*$  if every pair of strings in S is distinguishable with respect to each other.

Example.  $L = \{w \in \{a, b\}^* \mid w \text{ starts and ends with the same symbol}\}$ 

An example fooling set for L?

**Question.** Can the size of a fooling set be bigger than the number of equivalence classes?

- Max size of a fooling set for L = # of equivalence class of  $\equiv_L$
- Size of any fooling set for  $L \leq \#$  of equivalence class of  $\equiv_L$

## Myhill-Nerode Theorem

Maximum fooling set size of L

```
= # equivalence classes of \equiv_L
```

= minimum states of DFA for L

**Takeaway.** If we could prove that there exists an infinite number of distinguishable sets for a language, it would mean that even the smallest DFA for the language would require an infinite number of states. Therefore, no such DFA exists and the language cannot be regular.

# Proving Non-Regularity

**Problem.** Prove that the language  $L = \{a^i b^i \mid i \in \mathbb{N}\}$  is not regular.

Hint. Identify and prove that L has an infinite fooling set.

# Proving Non-Regularity

**Problem.** Prove that the langueg  $L = \{a^n \mid n \in \mathbb{N} \text{ and } n \text{ is a power of } 2\}$  is not regular.

Hint. Identify and prove that L has an infinite fooling set.