CSCI 361 Lecture 5:
Regular Expressions

Shikha Singh



Announcements & Logistics

No class today (Sept 19)!

| am at Tapia Celebration of Diversity in Computing (San Diego)
In lieu of a lecture, please refer to the textbook (Chapter 1.3)
These slides break these readings down and state main takeaways
Questions iIn HW 2 is based on these concepts

We will move on to "Non regular” languages in Lecture 6 Sept 24



Overview So Far

Showed the equivalence of DFAs and NFAS
Regular languages are those that are recognized by a DFA/ NFA

Regular languages are closed under:
Complement

Union

Intersection

Concatenation

Kleene star



loday

A "generative" way to characterize regular languages: regular
expressions

Have many applications in programming languages
grep/ awk in UNIX

Define regular expressions and give examples

Show that regular expressions are equivalent to DFA/NFA



Formal Definrtion: Regular Expression

A regular expression R over the alphabet 2 is defined inductively as
follows. R is regular expression if

» (base cases). R is either a for some a € 2, or an empty string € or
an empty set &

» (recursive cases using regular operators).
R I1s the union, concatenation or Kleene star of smaller regular
expressions thatis, R =R; UR, or R = R; e R, or R = R¥ where

Ry, R, are regular expressions

» Let the language of a regular expression L(R) be the set of strings that
can be generated by the regular expression

»+ Examples: 0*10%*, (01)* U (10)*, XX etc



[dentities of Regular Expressions

» It R 1s a regular expression then:

- RUO =R
* Roe =R

- But the following may not hold:

* R U € not may be same as R

* R is @ (and not same as R)



Fquivalence with Finite Automata

- Lemma (1.55 in Sipser). If a language Is described by a regular
expression, then Is regular

* Proof. Let R is the regular expression, sufficient to create an NFA
that recognizes L(R)

+ (base cases). It s easy to create an NFA for each of the base
cases for R, see below

Oe0 -0 O

R=a




Fquivalence with Finite Automata

- Lemma (1.55 in Sipser). If a language Is described by a regular
expression, then Is regular

* Proof. Let R is the regular expression, sufficient to create an NFA
that recognizes L(R)

» (recursive cases). Suppose by induction we have an NFA for
any regular expression smaller than R, we can create an NFA
for R using the union/concatenation/Kleene star of these NFA



Regular

-xpression to NFA:

—xample [.56

+ Convert regular expression (ab U a*) to an NFA

ab U a

(abUa)*

ab




Converting a DFA to Regular Expression

- Lemma (1.60 in Sipser). If a language Is regular (recognized by a
DFA), then It can be described by some regular expression.

* Proof outline.

» Convert the DFA into a GNFA (generalized NFA) with £ > 2
states (defined on next slide)

- Eliminate states of the GNFA one by one until two states left

- Output the regular expression from the start to accept state



Generalized NFA

A GNFA Is a generalized NFA with the following conditions:

Transitions are on regular expressions (not just symbols or €)

Start state has an arrow to every other state and not arrows coming in
from any state

Only one accept state that has arrows coming in from every other state
and no arrows leaving it

Every other state has arrows to every other state including rtself




DFA = GNFA = Regulartxp

- Let M = (0, 2,0, qy, F) be a DFA, we can convert it to a regular
expression as follows

+ GNFA G add a new start state g and accept state g, to M

» |f there Is an arrow missing from g, to a state g € (J, add an
arrow labelled with @

+ Add € arrows from F to g;

» For any pair of states (p, g) that are neither start or accept states of
M, add addrtional @ arrows to create a valid GNFA

- Now perform the state-elimination algorithm described next to
convert G with k states to G with k — 1 states



State Elimination Algorithm

. Consider a GNFA with k > 2 states and let drip be a state that Is

nerther the start or accept state

. Create a GNFA with k — 1 states by removing drip and replacing all

transition paths that went through it with an equivalent regular

expression
o ) (B (B)* (B U (R @
Rs Z

before after




rinal Regular Expression

Perform the state elimination algorithm until there are k = 2 states
(start and accept) states left

- Output the regular expression on the only remaining transition

- Correctness: by induction on the number of states of GNFA

o ) (B (B)* (B U (R e
R4 Z

before after




DFA to Regular Ex
X0 IR O O2
@,b

(a)

ression Exam

Y _ aUb
@@

(b)

dle




lakeaways

- Regular expressions provide an alternate "generative” way to describe
regular languages

- [hree ways to characterize regular languages:

+ DFAs

- NFAs

* Regular languages

- Next time: non-regular languages

- How do we identify and prove that languages are not regular?

- |dentify the minimum # of states required by a DFA



