
CSCI 361 Lecture 5:
Regular Expressions

Shikha Singh

Announcements & Logistics
• No class today (Sept 19)!

• I am at Tapia Celebration of Diversity in Computing (San Diego)
• In lieu of a lecture, please refer to the textbook (Chapter 1.3)
• These slides break these readings down and state main takeaways
• Questions in HW 2 is based on these concepts
• We will move on to "Non regular" languages in Lecture 6 Sept 24

Overview So Far
• Showed the equivalence of DFAs and NFAs
• Regular languages are those that are recognized by a DFA/ NFA
• Regular languages are closed under:

• Complement
• Union
• Intersection
• Concatenation
• Kleene star

Today
• A "generative" way to characterize regular languages: regular

expressions

• Have many applications in programming languages
• grep/ awk in UNIX

• Define regular expressions and give examples
• Show that regular expressions are equivalent to DFA/NFA

Formal Definition: Regular Expression
A regular expression over the alphabet is defined inductively as
follows. is regular expression if

• (base cases). is either for some , or an empty string or
an empty set

• (recursive cases using regular operators).
 is the union, concatenation or Kleene star of smaller regular

expressions that is, or or where
 are regular expressions

• Let the language of a regular expression be the set of strings that
can be generated by the regular expression

• Examples: , , , etc

R Σ
R

R a a ∈ Σ ε
∅

R
R = R1 ∪ R2 R = R1 ∘ R2 R = R*1

R1, R2

L(R)

0*10* (01)* ∪ (10)* ΣΣ

Identities of Regular Expressions
• If is a regular expression then:

•

•

• But the following may not hold:

• not may be same as

• is (and not same as)

R

R ∪ ∅ = R

R ∘ ε = R

R ∪ ε R

R ∘ ∅ ∅ R

Equivalence with Finite Automata
• Lemma (1.55 in Sipser). If a language is described by a regular

expression, then is regular

• Proof. Let is the regular expression, sufficient to create an NFA
that recognizes

• (base cases). It is easy to create an NFA for each of the base
cases for , see below

R
L(R)

R

R = a R = ε R = ∅

Equivalence with Finite Automata
• Lemma (1.55 in Sipser). If a language is described by a regular

expression, then is regular

• Proof. Let is the regular expression, sufficient to create an NFA
that recognizes

• (recursive cases). Suppose by induction we have an NFA for
any regular expression smaller than , we can create an NFA
for using the union/concatenation/Kleene star of these NFA

R
L(R)

R
R

Regular Expression to NFA: Example 1.56
• Convert regular expression to an NFA(ab ∪ a*)

Converting a DFA to Regular Expression
• Lemma (1.60 in Sipser). If a language is regular (recognized by a

DFA), then it can be described by some regular expression.

• Proof outline.

• Convert the DFA into a GNFA (generalized NFA) with
states (defined on next slide)

• Eliminate states of the GNFA one by one until two states left
• Output the regular expression from the start to accept state

k ≥ 2

Generalized NFA
• A GNFA is a generalized NFA with the following conditions:

• Transitions are on regular expressions (not just symbols or)

• Start state has an arrow to every other state and not arrows coming in
from any state

• Only one accept state that has arrows coming in from every other state
and no arrows leaving it

• Every other state has arrows to every other state including itself

ε

DFA GNFA RegularExp⟹ ⟹
• Let be a DFA, we can convert it to a regular

expression as follows

• GNFA : add a new start state and accept state to

• If there is an arrow missing from to a state , add an
arrow labelled with

• Add arrows from to

• For any pair of states that are neither start or accept states of
, add additional arrows to create a valid GNFA

• Now perform the state-elimination algorithm described next to
convert with states to with states

M = (Q, Σ, δ, q0, F)

G qs qf M

qs q ∈ Q
∅

ε F qf

(p, q)
M ∅

G k G k − 1

State Elimination Algorithm
• Consider a GNFA with states and let be a state that is

neither the start or accept state

• Create a GNFA with states by removing and replacing all
transition paths that went through it with an equivalent regular
expression

k > 2 qrip

k − 1 qrip

Final Regular Expression
• Perform the state elimination algorithm until there are states

(start and accept) states left
• Output the regular expression on the only remaining transition
• Correctness: by induction on the number of states of GNFA

k = 2

DFA to Regular Expression Example

Takeaways
• Regular expressions provide an alternate "generative" way to describe

regular languages
• Three ways to characterize regular languages:

• DFAs
• NFAs
• Regular languages

• Next time: non-regular languages
• How do we identify and prove that languages are not regular?
• Identify the minimum # of states required by a DFA

