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Announcements & Logistics
• No class today (Sept 19)! 

• I am at Tapia Celebration of Diversity in Computing (San Diego)
• In lieu of a lecture, please refer to the textbook (Chapter 1.3)
• These slides break these readings down and state main takeaways
• Questions in HW 2 is based on these concepts
• We will move on to "Non regular" languages in Lecture 6 Sept 24



Overview So Far
• Showed the equivalence of DFAs and NFAs
• Regular languages are those that are recognized by a DFA/ NFA
• Regular languages are closed under:

• Complement
• Union
• Intersection
• Concatenation 
• Kleene star



Today
• A "generative" way to characterize regular languages:  regular 

expressions

• Have many applications in programming languages
• grep/ awk in UNIX

• Define regular expressions and give examples
• Show that regular expressions are equivalent to DFA/NFA



Formal Definition:  Regular Expression
A regular expression  over the alphabet   is defined inductively as 
follows.   is regular expression if

• (base cases).  is either  for some ,  or an empty string  or 
an empty set 

• (recursive cases using regular operators).   
 is the union, concatenation or Kleene star of smaller regular 

expressions that is,   or  or  where 
 are regular expressions

• Let the language of a regular expression  be the set of strings that 
can be generated by the regular expression

• Examples:  ,  ,  , etc

R Σ
R

R a a ∈ Σ ε
∅

R
R = R1 ∪ R2 R = R1 ∘ R2 R = R*1

R1, R2

L(R)

0*10* (01)* ∪ (10)* ΣΣ



Identities of Regular Expressions
• If  is a regular expression then:

•

•

• But the following may not hold:

•  not may be same as 

•  is  (and not same as )

R

R ∪ ∅ = R

R ∘ ε = R

R ∪ ε R

R ∘ ∅ ∅ R



Equivalence with Finite Automata
• Lemma (1.55 in Sipser).   If a language is described by a regular 

expression, then is regular

• Proof.  Let  is the regular expression, sufficient to create an NFA 
that recognizes 

• (base cases).   It is easy to create an NFA for each of the base 
cases for , see below

R
L(R)

R

R = a R = ε R = ∅



Equivalence with Finite Automata
• Lemma (1.55 in Sipser).   If a language is described by a regular 

expression, then is regular

• Proof.  Let  is the regular expression, sufficient to create an NFA 
that recognizes 

• (recursive cases).  Suppose by induction we have an NFA for 
any regular expression smaller than ,  we can create an NFA 
for  using the union/concatenation/Kleene star of these NFA

R
L(R)

R
R



Regular Expression to NFA:  Example 1.56
• Convert regular expression  to an NFA(ab ∪ a*)



Converting a DFA to Regular Expression
• Lemma (1.60 in Sipser).   If a language is regular (recognized by a 

DFA), then it can be described by some regular expression.

• Proof outline. 

• Convert the DFA into a GNFA (generalized NFA) with  
states  (defined on next slide)

• Eliminate states of the GNFA one by one until two states left 
• Output the regular expression from the start to accept state

k ≥ 2



Generalized NFA
• A GNFA is a generalized NFA with the following conditions:

• Transitions are on regular expressions (not just symbols or )

• Start state has an arrow to every other state and not arrows coming in 
from any state

• Only one accept state that has arrows coming in from every other state 
and no arrows leaving it

• Every other state has arrows to every other state including itself

ε



DFA  GNFA  RegularExp⟹ ⟹
• Let  be a DFA, we can convert it to a regular 

expression as follows

• GNFA :  add a new start state  and accept state  to 

• If there is an arrow missing from  to a state , add an 
arrow labelled with 

• Add  arrows from  to 

• For any pair of states  that are neither start or accept states of 
, add additional  arrows to create a valid GNFA 

• Now perform the state-elimination algorithm described next to 
convert  with  states to  with  states 

M = (Q, Σ, δ, q0, F)

G qs qf M

qs q ∈ Q
∅

ε F qf

(p, q)
M ∅

G k G k − 1



State Elimination Algorithm
• Consider a GNFA with  states and let  be a state that is 

neither the start or accept state

• Create a GNFA with  states by removing  and replacing all 
transition paths that went through it with an equivalent regular 
expression 

k > 2 qrip

k − 1 qrip



Final Regular Expression
• Perform the state elimination algorithm until there are  states 

(start and accept) states left
• Output the regular expression on the only remaining transition 
• Correctness: by induction on the number of states of GNFA

k = 2



DFA to Regular Expression Example



Takeaways
• Regular expressions provide an alternate "generative" way to describe 

regular languages
• Three ways to characterize regular languages:

• DFAs
• NFAs
• Regular languages

• Next time:  non-regular languages
• How do we identify and prove that languages are not regular?
• Identify the minimum # of states required by a DFA


