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Announcements & Logistics
• HW 1 due tonight at 10 pm via Gradescope
• Hand in reading assignment #3
• No reading assignment for next lecture:  

• we are still catching up to the readings

• Thursday's lecture is cancelled:   I'll be at Tapia @ San Diego
• Planned topic:  regular expressions
• Read from the book and slides
• Answer HW 2 questions based on reading

• HW 2 will be released today
• Due next Wed (Sept 25)

• Questions?



Overview So Far
• First model of computation:  finite automata
• "Expressive"/computational power of finite automata:

• Solves/recognizes the class of languages:  regular languages
• Will look at two "equivalent" models:

• Non-deterministic finite automata 
• Regular expressions (used to generate regular languages)

• DFA  NFA  regular expression 

• Last segment:  will prove some languages are not regular
• Show recognizes them requires infinite states

⟺ ⟺



Today
• More practice with designing NFAs

• Plan for Thursday's lecture:  show DFA  NFA
• Instead read "subset construction" from the textbook 
• Answer question on it in HW 2
• Will review next Tuesday how this equivalence works

• Move on to regular expressions today

⟺



Non-deterministic Finite 
Automaton (NFA)



Formal Definition:  NFA
A non-deterministic finite automaton (NFA) is a 5-tuple 

, where

•  is a finite set called the states,

•  is a finite set called the alphabet,

•  is the transition function, where 

•  is the start state and  is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σε → 𝒫(Q) Σε = Σ ∪ {ε}

qo ∈ Q F ⊆ Q



NFA Computation
• Let  be a non-deterministic finite automaton and 

let  be a string where each .  Then  accepts 
 if there is a sequence of   in  such that

•

•  for  and

•

N = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ N

w r0, r1, …, rn Q

r0 = q0

ri+1 ∈ δ(ri, wi+1) i = 0,1,…, n − 1

rn ∈ F



Nondeterminism is Your Friend
• Build an NFA to recognize the following language:

• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA



Nondeterminism is Your Friend
• Build an NFA to recognize the following language:

• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA

DFA



Another Example
• What is the language recognized by this NFA?



DFA  NFA  
Equivalence 

⟺



Equivalence
• Definition.  Two machines are equivalent if they recognize the same 

language.

• Theorem.  Given any NFA  there exists an equivalent DFA  and 
vice versa.  

• One direction is easy:  every DFA is also an NFA by definition.

• Need to show can construct a DFA  such that 

N M

M L(M) = L(N)



Creating an Equivalent DFA
• Theorem.  Given any NFA  there exists an 

equivalent DFA .

• Proof outline:   "simulates"  by having a larger state space

• If  has  states,  will have  states to account for any possible 
subset of 's states

• In particular, 

• First, let's ignore  transitions

• How can  simulate ?

N = (Q, Σ, δ, q, F)
M

M N

N k M 2k

N

QM = 𝒫(Q)

ε

M N



Creating an Equivalent DFA
• Theorem.  Given any NFA  there exists an 

equivalent DFA .

• Proof.   where

•

•

•  for any , 

•  (any "set" of states that contains an 
accept state of )

• Correctness:  

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM)

QM = 𝒫(Q)

qM = {q}

δM(R, a) = ∪q∈R δ(r, a) R ∈ QM a ∈ Σ

FM = {R ∈ Q | R ∩ F ≠ ∅}
N

w ∈ L(N) ⟺ w ∈ L(M)



Example:  Equivalent DFA?



Example:  Equivalent DFA?



Example:  Equivalent DFA?



What about  transitions?ε



Creating an Equivalent DFA
• Theorem.  Given any NFA  there exists an 

equivalent DFA .

• Proof.   where  and 
 as before.

• Definition. ( -closure)  =  can reached from any 
state in  along zero or more  transitions 

• Notice that  and 

• Now we can define the start state of  as:   

• Transition function  for any , 

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM) QM = 𝒫(Q)
FM = {R ∈ Q | R ∩ F ≠ ∅}

ε E(Q) {q ∈ Q | q
R ε }

R ⊆ E(Q) E(Q) ∈ QM

M qM = E({q})

δ(R, a) = ∪r∈Q E(δ(r, a)) R ∈ QM a ∈ Σ



Equivalent DFA



Equivalent DFA



Alternate Definition of Regular Languages
• Corollary.  A language is regular iff some NFA recognizes it.



Concatenation
• Let  and  be languages over .   

• Definition.  Concatenation of  and , denoted  is defined as 
 
    

• Theorem.  Regular languages are closed under concatenation.

A B Σ

A B A ∘ B

A ∘ B = {xy |x ∈ A and y ∈ B}



Closed Under Concatenation
• Theorem.  The class of languages are closed under concatenation.
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Closed Under Concatenation
• Theorem.  The class of languages are closed under concatenation.

• Proof.  Let  be the NFA for  and       
                be the NFA for 

• Construct NFA  to recognize 

•

•

•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N2 = (Q2, Σ, δ2, q2, F2) L2

N = (Q, Σ, δ, q0, F) L1 ∘ L2

Q = Q1 ∪ Q2

q0 = q1

F = F2



Kleene Star
• Let  be a language on 

• Definition.  Kleene star of , denoted  is defined as: 
 
    

• Example.  Suppose , what is ?

• Question.  Are regular languages closed under Kleene star?

A Σ

A A*

A* = {w1w2⋯wk |k ≥ 0 and each wi ∈ A}

L1 = {01,11} L*



Kleene Star
• Theorem.  The class of regular languages is closed under Kleene star.



• Theorem.  The class of languages are closed under Kleene star.

• Proof.  Let  be the NFA for  

• Construct NFA  to recognize 

•  (add a new start state)

•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N = (Q, Σ, δ, q0, F) L*1

Q = Q1 ∪ {q0}

F = F1 ∪ {q0}

Closed Under Kleene Star



Not All Languages are Regular
• Intuition about regular languages:

• DFA only has finitely many states, say 

• Any string with at least  symbols:  some DFA state is visited more 
than once

• DFA "loops" on long enough strings

• Can only recognize languages with such nice "regular" structure

• Will see general techniques for showing that a language is not regular

• Classic example of a language that is not regular :

•  (equal number of 0s and 1s)

k

k

{w = 0n1n |n ≥ 0}


