
CSCI 361 Lecture 4:  
Nondeterministic Finite Automata

Shikha Singh

Announcements & Logistics
• HW 1 due tonight at 10 pm via Gradescope

• Hand in reading assignment #3

• No reading assignment for next lecture:

• we are still catching up to the readings

• Thursday's lecture is cancelled: I'll be at Tapia @ San Diego

• Planned topic: regular expressions

• Read from the book and slides

• Answer HW 2 questions based on reading

• HW 2 will be released today

• Due next Wed (Sept 25)

• Questions?

Overview So Far
• First model of computation: finite automata

• "Expressive"/computational power of finite automata:

• Solves/recognizes the class of languages: regular languages

• Will look at two "equivalent" models:

• Non-deterministic finite automata

• Regular expressions (used to generate regular languages)

• DFA NFA regular expression

• Last segment: will prove some languages are not regular

• Show recognizes them requires infinite states

⟺ ⟺

Today
• More practice with designing NFAs

• Plan for Thursday's lecture: show DFA NFA

• Instead read "subset construction" from the textbook

• Answer question on it in HW 2

• Will review next Tuesday how this equivalence works

• Move on to regular expressions today

⟺

Non-deterministic Finite
Automaton (NFA)

Formal Definition: NFA
A non-deterministic finite automaton (NFA) is a 5-tuple

, where

• is a finite set called the states,

• is a finite set called the alphabet,

• is the transition function, where

• is the start state and is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σε → 𝒫(Q) Σε = Σ ∪ {ε}

qo ∈ Q F ⊆ Q

NFA Computation
• Let be a non-deterministic finite automaton and

let be a string where each . Then accepts
 if there is a sequence of in such that

•

• for and

•

N = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ N

w r0, r1, …, rn Q

r0 = q0

ri+1 ∈ δ(ri, wi+1) i = 0,1,…, n − 1

rn ∈ F

Nondeterminism is Your Friend
• Build an NFA to recognize the following language:

• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA

Nondeterminism is Your Friend
• Build an NFA to recognize the following language:

• L = {w | w ∈ {0,1}* and has a 1 in the 3rd position from the end}

NFA

DFA

Another Example
• What is the language recognized by this NFA?

DFA NFA  
Equivalence

⟺

Equivalence
• Definition. Two machines are equivalent if they recognize the same

language.

• Theorem. Given any NFA there exists an equivalent DFA and
vice versa.

• One direction is easy: every DFA is also an NFA by definition.

• Need to show can construct a DFA such that

N M

M L(M) = L(N)

Creating an Equivalent DFA
• Theorem. Given any NFA there exists an

equivalent DFA .

• Proof outline: "simulates" by having a larger state space

• If has states, will have states to account for any possible
subset of 's states

• In particular,

• First, let's ignore transitions

• How can simulate ?

N = (Q, Σ, δ, q, F)
M

M N

N k M 2k

N

QM = 𝒫(Q)

ε

M N

Creating an Equivalent DFA
• Theorem. Given any NFA there exists an

equivalent DFA .

• Proof. where

•

•

• for any ,

• (any "set" of states that contains an
accept state of)

• Correctness:

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM)

QM = 𝒫(Q)

qM = {q}

δM(R, a) = ∪q∈R δ(r, a) R ∈ QM a ∈ Σ

FM = {R ∈ Q | R ∩ F ≠ ∅}
N

w ∈ L(N) ⟺ w ∈ L(M)

Example: Equivalent DFA?

Example: Equivalent DFA?

Example: Equivalent DFA?

What about transitions?ε

Creating an Equivalent DFA
• Theorem. Given any NFA there exists an

equivalent DFA .

• Proof. where and
 as before.

• Definition. (-closure) = can reached from any
state in along zero or more transitions

• Notice that and

• Now we can define the start state of as:

• Transition function for any ,

N = (Q, Σ, δ, q, F)
M

M = (QM, Σ, δM, qM, FM) QM = 𝒫(Q)
FM = {R ∈ Q | R ∩ F ≠ ∅}

ε E(Q) {q ∈ Q | q
R ε }

R ⊆ E(Q) E(Q) ∈ QM

M qM = E({q})

δ(R, a) = ∪r∈Q E(δ(r, a)) R ∈ QM a ∈ Σ

Equivalent DFA

Equivalent DFA

Alternate Definition of Regular Languages
• Corollary. A language is regular iff some NFA recognizes it.

Concatenation
• Let and be languages over .

• Definition. Concatenation of and , denoted is defined as 
 

• Theorem. Regular languages are closed under concatenation.

A B Σ

A B A ∘ B

A ∘ B = {xy |x ∈ A and y ∈ B}

Closed Under Concatenation
• Theorem. The class of languages are closed under concatenation.

Closed Under Concatenation
• Theorem. The class of languages are closed under concatenation.

Closed Under Concatenation
• Theorem. The class of languages are closed under concatenation.

• Proof. Let be the NFA for and  
 be the NFA for

• Construct NFA to recognize

•

•

•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N2 = (Q2, Σ, δ2, q2, F2) L2

N = (Q, Σ, δ, q0, F) L1 ∘ L2

Q = Q1 ∪ Q2

q0 = q1

F = F2

Kleene Star
• Let be a language on

• Definition. Kleene star of , denoted is defined as: 
 

• Example. Suppose , what is ?

• Question. Are regular languages closed under Kleene star?

A Σ

A A*

A* = {w1w2⋯wk |k ≥ 0 and each wi ∈ A}

L1 = {01,11} L*

Kleene Star
• Theorem. The class of regular languages is closed under Kleene star.

• Theorem. The class of languages are closed under Kleene star.

• Proof. Let be the NFA for

• Construct NFA to recognize

• (add a new start state)

•

•

N1 = (Q1, Σ, δ1, q1, F1) L1

N = (Q, Σ, δ, q0, F) L*1

Q = Q1 ∪ {q0}

F = F1 ∪ {q0}

Closed Under Kleene Star

Not All Languages are Regular
• Intuition about regular languages:

• DFA only has finitely many states, say

• Any string with at least symbols: some DFA state is visited more
than once

• DFA "loops" on long enough strings

• Can only recognize languages with such nice "regular" structure

• Will see general techniques for showing that a language is not regular

• Classic example of a language that is not regular :

• (equal number of 0s and 1s)

k

k

{w = 0n1n |n ≥ 0}

