
CSCI 361 Lecture 22:  
Wrap Up and Evals

Shikha Singh

Announcements & Logistics
• Grab feedback on 1-page paper drafts

• Survey paper deadlines:

• 10 min presentation + Q&A on Dec 5

• Final paper due Dec 6 on Gradescope

• End early today to allow time for student evaluations

• Self-scheduled final exam between Dec 7-15

• 2.5 hr exam

• Practice exam will release soon

• Office hours during reading period (Mon/Tues): 2-3.30 pm

Last Time
• Wrapped up complexity theory

Today
• Wrap up and review course

• Course evals

What is Computation

Input

Output

"Computer"

Defining Computation
• Computation: manipulation of information/data to solve a problem

• Computational problem: the input/output pairs

• Algorithm: description of how this data is manipulated

Input

Output

Theory of Computation
• Need a formal model of what it means to solve a problem

• Theory of Computation:

• Building a mathematical model for computation

• Using the model to understand the power and limits of computation

• Gain insights that inform applications

Topics and Theme

• Automata Theory

• Finite automaton and Regular Languages

• PDAs and CFLs

• Computability Theory:

• Model a modern computer as a Turing machine

• Identify what problems can and cannot be solved by it

• Complexity Theory:

• Classify problems based on efficiency of solving it

What are the fundamental capabilities and limitations of computers?

Regular Languages and DFA
• Question. What did we learn about finite automaton and regular

languages?

Regular Languages and DFA
• Equivalence of models:

• DFA ⇔ NFA ⇔ Regular Expressions

• Closure properties

• Closed under intersection, union, complement, concatenation, star,
set difference, reverse, etc.

• Minimal DFAs and Equivalence classes

• How to prove a language is not regular :

• Pumping lemma

• Myhill Nerode

Power and Limitations
• DFAs are good at simple repetitive or sequencing problems

• Do not have enough memory to count to an arbitrary number

• Examples of languages for which no DFA exists?

•

•

•

•

• To add more computation power, let's add some memory: a stack

{0n1n | n ≥ 0}

{w ∈ {0,1}* | number of 0s same as number of 1s}

{ww | w ∈ {0,1}*}

{wwR | w ∈ {0,1}*}

Context-Free Languages
• Question. What did we learn about PDAs and context-free

languages?

Context-Free Languages
• Context-free grammars for generating CFLs

• Push-down automaton for recognizing CFLs

• Equivalence: (Non-deterministic) PDA CFGs

• Closure properties:

• Closed under union, Kleene star, reverse, concatenation

• Not closed under intersection, complement

• Intersection of a CFL and regular language is context-free

• How to prove a language is not context-free:

• Pumping lemma: uses the fact that to generate arbitrarily long

strings, must reuse a variable (recursion)

⟺

Power and Limitations
• Access to a stack (recursion), add considerable power over a DFA

• Examples of CFLs that are not regular?

•

•

•

• (Palindromes)

•

• Still has limitations: examples of languages that are not context-free?

{0n1n | n ≥ 0}

{w ∈ {0,1}* | number of 0s same as number of 1s in w}

{wwR | w ∈ {0,1}*}

{w | w ∈ {0,1}* and w = wR}

{aibjck | i, j, k ≥ 0 and i = j or j = k}

Non-Context-Free Languages
• Pairing/Counting examples we have seen:

•

• HW: language of palindromes with equal # of 1s and 0s

• Strings over with equal # of a's, b's and c's

•

•

• Non-linear counting examples:

•

• Intuition: structure is too rigid to be able to be "pumped"

{anbncn | n ≥ 0}, {anbnan}, {ww | w ∈ {a, b}*}

{a, b, c}

{anbmanbm | n, m ≥ 0}

{w an wR bn | w ∈ {a, b}*, n ≥ 0}

{a2n | n ≥ 0}, {ap | p is a prime}, {an2 | n ≥ 0}

Moving Up: Turing Machines
• A finite automaton with infinite memory

• Question. What did we learn about Turing machines and languages
decided by TMs?

TM and TM Decidable Languages
• Church-Turing Thesis

• Anything that be computed by algorithms can be done on a TM

• Models of Turing machines:

• Multi-tape, non-deterministic

• Properties of decidable languages:

• Closed under union, intersection and complement

• is decidable iff and are TM recognizable

• Decidable languages about semantic properties of DFAs/CFGs?

• , , , , , etc.

L L L

ADFA ACFG EDFA ECFG EQDFA

Limits of Computation: Undecidability
• There are infinitely many decision problems that cannot be solved by

any TM (counting argument)

• What do these problems look like?

• Diagonalization to prove is undecidable

• Reductions to prove a bunch of other problems are undecidable

• Halting problem, , ,

• Rice's theorem says any non-trivial property of language of TM is
undecidable

• Introduced mapping reductions (useful for TM recognizability)

ATM

ETM EQTM REGULARTM

Undecidability and Unrecognizability
• CFG related problems that are undecidable?

• ,

• How did we prove these were undecidable?

• Using PCP

• How did we prove PCP is undecidable?

• Using computation-history method

• How did we find Turing unrecognizable problems?

• If an undecidable language is Turing recognizable, its complement must
be not Turing recognizable

• Is there a language that is neither Turing recognizable not TM co-
recognizable?

EQCFG ∩CFG

Complexity Theory
• Question. What did we learn about the different complexity

classes?

Complexity Theory
• Time complexity classes: , , , ,

• (Cook-Levin Theorem) SAT is NP complete.

• Implications of P vs NP

• Reductions to prove other problems are NP complete:

• Vertex Cover

• Clique

• 3Color

• Hamiltonian Cycle, etc

• Final picture:

𝖯 𝖭𝖯 𝖭𝖯-complete 𝖭𝖯-hard
𝖤𝖷𝖯𝖳𝖨𝖬𝖤

We know , so one of these
containments is proper but we don't know which one

𝖯 ≠ 𝖤𝖷𝖯𝖳𝖨𝖬𝖤

Takeaways
• Computational laws:

• The simpler the model, the easier it is to verify its properties

• The more power we add, the less we can verify

• Computers can't do everything: many problems are not solvable

• Many problems are not solvable in a reasonable amount of time

• TCS is a young field: there is a lot we still don't know

Thank you!

• You all should be proud of how much you’ve learned

• Good luck on the presentations & final exam and have great
winter break!

Course Evaluations

Course Evals Logistics

• Two parts: (1) SCS form , (2) Blue sheets (both on GLOW)

• Your responses are confidential and we will only receive a report of your
anonymized comments after we have submitted all grades for this course

• SCS forms are used for tenure/promotion & seen by CAP etc, blue
sheets are open-ended comments directed only to your instructor

To access the online evaluations, log into Glow (glow.williams.edu) using your
regular Williams username and password (the same ones you use for your
Williams email account). On your Glow dashboard you’ll see a course called
“Course Evaluations.” Click on this and then follow the instructions you
see on the screen. If you have trouble finding the evaluation, you can ask a

neighbor for help or reach out to ir@williams.edu.

