
CSCI 361 Lecture 20:  
NP Complete Problems

Shikha Singh



Announcements & Logistics
• Hand reading assignment # 14

• Pick up reading assignment # 15 


• Partner and topic due by Thursday


• Will discuss more today


• HW 6 grading feedback returned


• Ask questions if the feedback doesn't make sense


• HW due 8 tomorrow 10 pm


• Can work together in pairs

• Turn in a joint write up on Gradescope



Last Time
• Definitions: 


• Discussed P vs NP problem


• Polynomial-time reductions and reduction from 3SAT


• 3SAT ≤p CLIQUE



Today
• More practice with NP completeness reductions


•

•

•

• Won't get to all of these but reductions are available in the book and 
slides if you want to refer to them


• Review of CSCI 256 reductions

3SAT ≤p VertexCover

3SAT ≤p HamiltonianCycle

3SAT ≤p 3COLOR



NP Hard and NP Complete
• Definition.  (NP Hard).  A language  is NP hard if every 

language in NP is polynomial-time reducible to .


• Definition.  (NP Complete).  A language  is NP complete 
if  and  is NP hard.

B
B

B
B ∈ 𝖭𝖯 B

𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯



𝖯

𝖭𝖯

𝖭𝖯 complete

hard𝖭𝖯

• Cook-Levin Theorem says SAT/ 3SAT is NP Complete.  


• Will discuss proof next lecture 


• As  and CLIQUE is in ,  CLIQUE is also 
NP complete

3SAT ≤p CLIQUE NP

NP Hard and NP Complete



Vertex Cover is NP Complete
• Vertex cover of a graph  is a subset  such 

that each edge  has at least one end point in  
G = (V, E) C ⊆ V

e ∈ E C

VERTEX-COVER = {⟨G, k⟩ | G has a vertex cover of size k}



Vertex Cover is NP Complete
• To show vertex cover is NP complete, need to show:


• Vertex Cover is in NP,    why?


• Show that a known NP hard problem reduces to it via a 
polynomial-time reduction


• Strategy:  reduce from  using variable and clause 
gadgets

3SAT



3SAT to Vertex Cover
• Given a 3SAT instance , create a graph  as follows:


• For each variable  in , create a node  and  and connect 
them with an edge (variable gadget)


• For each clause  in , create a "triangle" of 3 nodes, each 
labeled with the corresponding literal and connected to each 
other and to the nodes in the variable gadget with the 
identical label (clause gadget)


• Instance of  VC is  so we need to set 

• Easier to "backward engineer" value of  after thinking 
through the reduction

ϕ G = (V, E)

x ϕ x x

c ϕ

⟨G, k⟩ k

k



3SAT to Vertex Cover

• If  has  variables and  clauses, what is the # of 
vertices & edges in ? 

ϕ m ℓ
G



Correctness of Reduction
• Set 

• If the instance  is satisfiable, what is the -vertex cover in ?


• If there is a -vertex cover in , then why is  satisfiable?


• Takeaway.  Vertex Cover is also NP complete.

k = m + 2ℓ

ϕ k G

k G ϕ



 
3SAT    HAMPATH≤p



3SAT  HAMPATH≤p

• Given 3SAT instance , transform it to directed graph  with 
nodes  such that  is satisfiable iff  has a hamiltonian path 
from  to  (a path that visits each node exactly once)


• Essential ingredients of a input assignments of 

• Each variable can be set to true or false (need to encode 
these settings in the graph in our variable gadget)


• For a clause to be satisfied at least one literal is set to true


• Need to hook up clause and variable gadgets to ensure iff 
correctness 

Φ G
s, t Φ G

s t

Φ



• Let  contain  clauses and  variables 


• Let  denote the  variable in 

• Variable gadget: for each variable  create a diamond shape 
structure with a horizontal row of nodes 


• Clause gadget: for each clause  we create a single node 

Φ k ℓ

x1, …, xℓ ℓ Φ

xi

cj

3SAT  HAMPATH≤p



3SAT  HAMPATH≤p



Connecting the variable and clause gadgets.


• If  appears in , connect th pair in the th diamond to 
the th clause:  connect in a zig-zag fashion (left)


• If  appears in , connect it in a zag-zig fashion (left)

xi cj j i
j

xi cj

Zig-Zag Zag-Zig

3SAT  HAMPATH≤p



• If   is true,  the Hamiltonian cycle will visit  in a zig-zag way


• Else if  is true, the Hamiltonian cycle will visit  in a zag-zig way


• Let's us map cycle traversal order to true/false assignments

xi cj

xi cj

Zig-Zag Zag-Zig

3SAT  HAMPATH≤p



• Situation that cannot occur in a Hamiltonian cycle of : clause 
entered from one diamond but exited to a different

G

Such a cycle would never visit node  a2

3SAT  HAMPATH≤p



Survey Paper Discussion
• Read this guide 

• Hand in partner and topic:   Nov 21 (Thurs) in class


• 1 page draft of background due Nov 26 (Tues) in class


• Class presentation:  Dec 5 and short paper (3 pages) due Dec 6

https://docs.google.com/document/d/1npzrsMaPiMLIyjkYhEzLRL8J-581S56gLHT_H3jpVBc/edit?tab=t.0


Graph-3-Color is NP Complete: 
3-SAT    Graph 3-Color≤p



Graph 3-Color Problem

• 3-COLOR.  Given an undirected graph , is it possible to 
color the vertices with 3 colors s.t. no adjacent nodes have the 
same color.


• We have shown in the past that 3-COLOR .

G = (V, E)

∈ 𝖭𝖯

yes instance



3-SAT  3-COLOR ≤p
• Proof.  Given a 3-SAT instance , define  as follows


• Truth gadget: a triangle with three nodes  and  (for true, false 
and other) — they must get different colors (say true, false, other)


• Variable gadget: a triangle made up of variable , its negation  and 
the  node of the truth gadget — enforces  are colored true/false

Φ G

T, F, X

a a
X a, a

T

X

F

a a



• Given a 3-SAT instance , define  as follows


• Truth gadget: a triangle with three nodes  and  (for true, false 
and other) — they must get different colors (say true, false, other)


• Variable gadget: triangle made up of variable , its negation  and 
the  node of the truth gadget — enforces  are colored true/
false


• Clause gadget: joins three literal nodes (from the variable gadget) to 
node  in the truth gadget using a subgraph as shown below 

Φ G

T, F, X

a a
X a, a

T

(a ∨ b ∨ c)

3-SAT  3-COLOR ≤p



• Observation.  A clause gadget has a valid 3-coloring, if and only 
if, at least one literal is colored True


• If  (or ) or ( ) get the same color (say, 
FALSE) then the right-end-point of the triangle must 
be colored the same (shown in blue)


• The remaining literal must be colored True! 

a, b b, c a, c

(a ∨ b ∨ c)

3-SAT  3-COLOR ≤p



• Example.  All valid 3-colorings of the “half-gadget" of the clause 
on the left


• Overall  for example instance on the rightG

3-SAT  3-COLOR ≤p



Correctness of reduction


•  If  is satisfiable, color the variable gadget based on the satisfying 
assignment


• Why can we extend this coloring to a valid 3-coloring of the clause 
gadgets? 


• Because at least one literal in each clause must be True


•  If  is 3-colorable, then the variable nodes must be colored T or F 
(because of the variable gadget), we can assign truth values based on the 
colors


• Why is this a satisfying assignment?  


• At least one of the literals in each clause must be colored true 
and thus the resulting assignment must satisfy  

( ⇒ ) Φ

( ⇐ ) G

Φ

3-SAT  3-COLOR ≤p



Running time of reduction


• If  has  variables and  clauses, then our resulting graph  
has at most  nodes


• Thus, we can construct  in  time


• Reduction is polynomial time!

ϕ n k G
2n + 5k + 3

G O(n + k)

3-SAT  3-COLOR ≤p



List of NPC Problems
• Satisfiability:  SAT/ 3-SAT


• INDEPENDENT SET and CLIQUE


• Covering problems:  VERTEX COVER,  SET COVER


• Coloring problem:  3-COLOR


• Sequencing problems:


• Traveling salesman problem


• Hamiltonian cycle / path


• Packing problems:  Subset-Sum, Knapsack (next time)

Have not shown all but 
similar reductions 



Fun Facts
• Hamiltonian path problem says NP complete even on very simple graph: two 

connected, cubic and planar graphs!


• Still NP complete on general grid graphs, but poly-time solvable on “solid grid 
graphs” (a Williams undergrad thesis by Chris Umans)



30

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-
COLOR

HAM-CYCLE

SUBSET-
SUM

KNAPSACK

SET-COVER

3SAT

CLIQ
UE

TSP



From: https://xkcd.com/287/

https://xkcd.com/287/


Useful NP-hard Problems
• BIN-PACKING. Given a set of items  where item  has size , 

bins of capacity , find an assignment of items to bins that minimizes the number 
of bins used?


• PARTITION. Given a set  of  integers, are there subsets  and  such that
,  and 


• MAXCUT. Given an undirected graph , find a subset  that 
maximizes the number of edges with exactly one endpoint in .


• MAX-2-SAT. Given a Boolean formula in CNF, with exactly two literals per clause, 
find a variable assignment that maximizes the number of clauses with at least one 
true literal. (2-SAT on the other hand is in )


• 3D-MATCHING.  Given  instructors,  courses, and  times, and a list of the 
possible courses and times each instructor is willing to teach, is it possible to 
make an assignment so that all courses are taught at different times?

I = {1,…, n} i si ∈ (0,1]
c

S n A B
A ∪ B = S A ∩ B = ∅ ∑

a∈A

a = ∑
b∈B

b

G = (V, E) S ⊂ V
S

𝖯
n n n



Many More hard computational problems

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 


Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley–Shubik voting power.

Recreation.  Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.



Fun NP-hard Games

• MINESWEEPER (from CIRCUIT-SAT)


• SODUKO (from 3-SAT)


• TETRIS (from 3PARTITION)


• SOLITAIRE (from 3PARTITION)


• SUPER MARIO BROTHERS (from 3-SAT)


• CANDY CRUSH SAGA (from 3-SAT variant)


• PAC-MAN (from Hamiltonian Cycle)


• RUBIC’s CUBE (recent 2017 result, from Hamiltonian Cycle)


• TRAINYARD (from Dominating Set)


