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Announcements & Logistics
• HW 1 released:  due Sept 17 (next Tuesday)


• Office hours and TA hours posted on course calendar

• Hand in reading assignment #1

• Pick up reading assignment #2, due at the start of  Thurs lecture

• Looking ahead:  


• I will be out next Thurs (Sept 18, at Tapia conference in San Diego)

• Lecture will be held as usual, covered by another CS prof 


• Questions?



Last Time
• Introduced history and overview of theory of computation 

• Discussed course logistics and reviewed syllabus 

• Defined fundamentals of input/output representation


• Alphabet  and set of all strings 

• Language: any subset of strings from alphabet, i.e., 

• Length of string  (# of symbols)


• All input/output in this course will be binary strings, that is, 
• Function problem vs decision problem:


• A function problem is given by   : 

• A decision problem is given by   : 

Σ Σ

L ⊆ Σ*

s

Σ = {0,1}

f Σ* → Σ*

f Σ* → {0,1}



Influence of Chomsky
• We will study computation through the lens of languages

• Influence of linguist Chomsky on computation

• A grammars generates a language (akin to speaking)


• Any string in the language can be generated 
using the rules of the grammar 


• A machine recognizes a language (akin to listening)

• If a given input string is in a language, the machine will 

"accept" (output true), otherwise "reject" (output false)



Background



Review Definitions
• Sets: 


• Subsets, empty set, equivalence of sets, power set

• Union, intersection, complement, difference, etc

• Cartesian product of sets: 

• Relations:  subset of Cartesian product of sets 

• Definition of a binary relation being reflexive, symmetric, transitive

• Equivalence relation


• Function:  mapping from an input to an output


•  is a relation on  such that for all , there is exactly 
one  such that 

•  written as 
• Review definitions of one-to-one, onto and bijective functions

A × B = {(a, b) | a ∈ A, b ∈ B}

f : D → R D × R x ∈ D
y ∈ R (x, y) ∈ F

(x, y) ∈ f f(x) = y



Cardinality 
• Sets can be finite or infinite


•  is finite if there is a bijection function  for 
some 

• Denote the size or cardinality as

•  is infinite if no such bijection exists


• Question.  Are all infinite sets the same size?


•  is a countably infinite set if there is a bijection function 

•  is a countable if it is finite or countably infinite 


•  is a uncountable if it is not countable

S f : S → {1,2,…, n}
n ∈ ℕ

|S | = n

S

S f : S → ℕ

S

S



Proof by Construction Example
• Theorem:  The set of integers  is countable.

• Proof Outline:


• Need to construct a bijective function  from  to 
• Show that it is one-one and onto

• Any ideas?

ℤ

f ℤ ℕ



Proof by Construction Example
• Theorem:  The set of integers  is countable.

• Proof Outline:


• Need to construct a bijective function  from  to 
• Show that it is one-one and onto

ℤ

f ℤ ℕ



Countability
• Any set that can be "enumerated" using natural numbers is countable


• Can talk about st item, nd item and so on 

• All items of the set appear in this on this list


• The set of all strings over a finite alphabet  is countable


• Recall   


• Here  is a set of all strings of length exactly  over 

• Each  is finite and contains  elements, can list them in 
lexicographic order at indices 

• Theorem:   is countable.

1 2

Σ

Σ* = ∪n∈ℕ∪{0} Σn

Σn n Σ

Σn ℓ = |Σ |n

1,…, ℓ

Σ*



Countability
• Theorem:  is countable. 

 
 
 
 
 
 

• Theorem: The countable union of countable sets is countable.

• Proof by picture (on the board)

ℕ × ℕ



Uncountability:  Proof by Contradiction
• Theorem:  The power set  of natural numbers is not countable.


• Proof Outline:


• Assume that  is countable:  a bijection to  exists


• That is, can enumerate all sets in  as 

• Reach an absurdity/contradiction
• Consider set of indices s.t.


• (  is in corresponding ):    

• (  is not in corresponding ):    


• , that is,  is a valid subset of :   such that 

• What is the contradiction?

𝒫(ℕ)

𝒫(ℕ) ℕ

𝒫(ℕ) S1, S2, …, Sk, …

⇒⇐

i Si D = {i ∈ ℕ | i ∈ Si}

i Si D = {i ∈ ℕ | i ∉ Si}

D = ℕ − D D ℕ ∃k Sk = D



Cantor's Diagnolizational Argument
• This is an example of diagnolizational argument


• Visualize where  appears on the diagonal


• Fun soviet version:  

• https://algorithmsoup.wordpress.com/2018/09/18/soviet-version-

of-cantors-diagonalization-argument/ 

Sk

https://algorithmsoup.wordpress.com/2018/09/18/soviet-version-of-cantors-diagonalization-argument/
https://algorithmsoup.wordpress.com/2018/09/18/soviet-version-of-cantors-diagonalization-argument/


Countability and Languages
• Recall,  we said that a set  is encodable if there is a one-to-one 

function  for some finite alphabet 

• Thus, the size of any encodable set is at most the size of 
• As we can encode any CS program/Turing machine using a finite 

alphabet, the set of such programs/Turing machines is countable


• However,  the power set  is uncountable

• Similar argument as to power set of natural numbers

• That is, there are uncountably many languages over any alphabet


• Takeaway:  can only encode countable things, but uncountably many 
"decidable problems" to solve  existence of undecidable problems


• What do these problems look like?

A
Enc : A → Σ* Σ

Σ*

𝒫(Σ*)

⟹



Finite State Automata



Simplest Form of Computation



Example:  Deterministic Finite Automata
• We will study computation through the lens of languages

• A machine recognizes a language (akin to listening)


• If a given input string is in a language, the machine will 
"accept" (output true), otherwise "reject" (output false)


• Question.  What language is recognized by this machine?

• Try some example strings



Definition of a Finite Automaton
A finite automaton is a 5-tuple , where


•  is a finite set called the states,


•  is a finite set called the alphabet,


•  is the transition function,


•  is the start state and  is the set of accept states.

(Q, Σ, δ, q0, F)

Q

Σ

δ : Q × Σ → Q

qo ∈ Q F ⊆ Q



Language of a Machine
• The set of all strings accepted by a finite automaton  is called the 

language of machine , and is written .


• Say  recognizes language 

• We will define  accepts  more formally

• Intuitive it is the strings on which it reaches an accepting state


M
M L(M)

M L(M)

M w



What Language?



Automaton Computation
• Let  be a finite automaton and let 

 be a string where each .  Then  accepts  if 
there is a sequence of   in  such that


•

•  for  and


•

M = (Q, Σ, δ, q0, F)
w = w1w2⋯wn wi ∈ Σ M w

r0, r1, …, rn Q

r0 = q0

δ(ri, wi+1) = ri+1 i = 0,1,…, n − 1

rn ∈ F



Extended Transition Function
• Let  be a DFA


• Transition function  is often extended to 
 where  is defined as the state the DFA 

ends up in if it starts at  and reads the string 

• Alternate definition of  accepts    

M = (Q, Σ, δ, q0, F)

δ : Q × Σ → Q
δ* : Q × Σ* → Q δ*(q, w)

q w

M w ⟺ δ*(q0, w) ∈ F



Regular Languages
• A language is called a regular language if some finite automaton 

recognizes it.


• Seen examples of the following regular languages today:


•

•

L(M1) = {w | w contains at least one 1 and an even number of zeroes follow the last 1}

L(M2) = {w | w ∈ {a, b}* that starts and ends with the same symbol}


