# CSCI 361 Lecture 2: Countability and Automata

Shikha Singh

## Announcements & Logistics

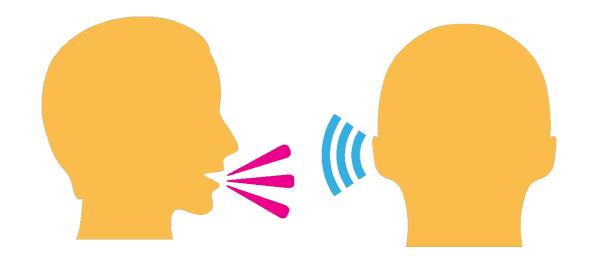
- **HW I released**: due Sept 17 (nextTuesday)
  - Office hours and TA hours posted on course calendar
- Hand in reading assignment #1
- Pick up reading assignment #2, due at the start of Thurs lecture
- Looking ahead:
  - I will be out next Thurs (Sept 18, at Tapia conference in San Diego)
  - Lecture will be held as usual, covered by another CS prof
- Questions?

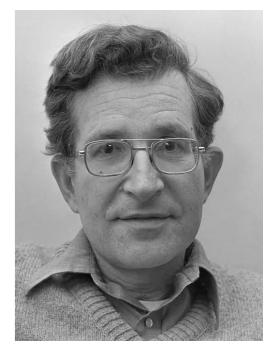
#### Last Time

- Introduced history and overview of theory of computation
- Discussed course logistics and reviewed syllabus
- Defined fundamentals of input/output representation
  - Alphabet  $\Sigma$  and set of all strings  $\Sigma$
  - Language: any subset of strings from alphabet, i.e.,  $L \subseteq \Sigma^*$
  - Length of string *s* (# of symbols)
- All input/output in this course will be **binary strings**, that is,  $\Sigma = \{0,1\}$
- Function problem vs decision problem:
  - A function problem is given by  $f: \Sigma^* \to \Sigma^*$
  - A decision problem is given by  $f: \Sigma^* \to \{0,1\}$

# Influence of Chomsky

- We will study computation through the lens of languages
- Influence of linguist Chomsky on computation
- A grammars generates a language (akin to speaking)
  - Any string in the language can be generated using the rules of the grammar
- A machine recognizes a language (akin to listening)
  - If a given input string is in a language, the machine will "accept" (output true), otherwise "reject" (output false)





Background

## Review Definitions

#### • Sets:

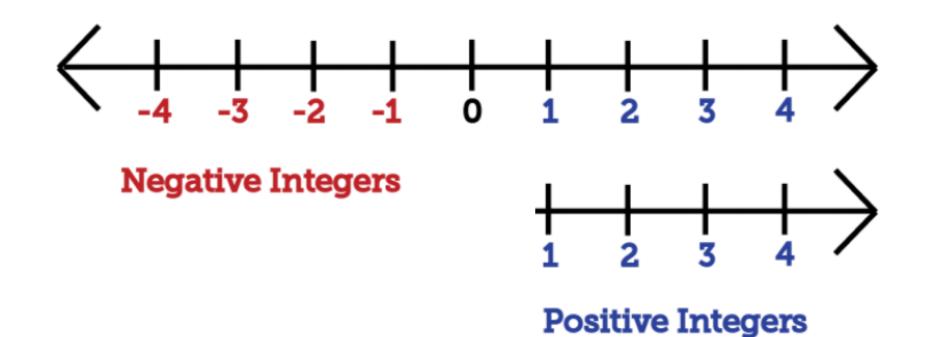
- Subsets, empty set, equivalence of sets, power set
- Union, intersection, complement, difference, etc
- Cartesian product of sets:  $A \times B = \{(a, b) \mid a \in A, b \in B\}$
- **Relations:** subset of Cartesian product of sets
  - Definition of a binary relation being reflexive, symmetric, transitive
  - Equivalence relation
- **Function:** mapping from an input to an output
  - $f: D \to R$  is a relation on  $D \times R$  such that for all  $x \in D$ , there is exactly one  $y \in R$  such that  $(x, y) \in F$
  - $(x, y) \in f$  written as f(x) = y
  - Review definitions of one-to-one, onto and bijective functions

# Cardinality

- Sets can be finite or infinite
  - S is finite if there is a bijection function  $f: S \to \{1, 2, ..., n\}$  for some  $n \in \mathbb{N}$
  - Denote the size or cardinality as |S| = n
  - *S* is **infinite** if no such bijection exists
- Question. Are all *infinite sets* the same size?
- S is a countably infinite set if there is a bijection function  $f: S \to \mathbb{N}$
- *S* is a **countable** if it is finite or countably infinite
- *S* is a **uncountable** if it is not countable

# Proof by Construction Example

- **Theorem**: The set of integers  $\mathbb{Z}$  is countable.
- Proof Outline:
  - Need to construct a bijective function f from  $\mathbb Z$  to  $\mathbb N$
  - Show that it is one-one and onto
  - Any ideas?



# Proof by Construction Example

- **Theorem**: The set of integers  $\mathbb{Z}$  is countable.
- Proof Outline:
  - Need to construct a bijective function f from  $\mathbb Z$  to  $\mathbb N$
  - Show that it is one-one and onto

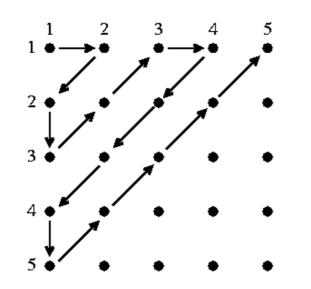
$$f(x) = egin{cases} -2x & ext{if } x < 0 \ 2x+1 & ext{if } x \geq 0 \end{cases}$$

# Countability

- Any set that can be "enumerated" using natural numbers is countable
  - Can talk about 1st item, 2nd item and so on
  - All items of the set appear in this on this list
- The set of all strings over a finite alphabet  $\Sigma$  is countable
  - Recall  $\Sigma^* = \bigcup_{n \in \mathbb{N} \cup \{0\}} \Sigma^n$
  - Here  $\Sigma^n$  is a set of all strings of length exactly n over  $\Sigma$
  - Each  $\Sigma^n$  is finite and contains  $\ell = |\Sigma|^n$  elements, can list them in lexicographic order at indices  $1, \ldots, \ell$
- **Theorem**:  $\Sigma^*$  is countable.

# Countability

• **Theorem**:  $\mathbb{N} \times \mathbb{N}$  is countable.



ullet

- **Theorem**: The countable union of countable sets is countable.
  - Proof by picture (on the board)

## Uncountability: Proof by Contradiction

- **Theorem**: The power set  $\mathscr{P}(\mathbb{N})$  of natural numbers is **not** countable.
- Proof Outline:
  - Assume that  $\mathscr{P}(\mathbb{N})$  is countable: a bijection to  $\mathbb{N}$  exists
  - That is, can enumerate all sets in  $\mathscr{P}(\mathbb{N})$  as  $S_1, S_2, \ldots, S_k, \ldots$
  - Reach an absurdity/contradiction  $\Rightarrow \leftarrow$
- Consider set of indices s.t.
  - (*i* is in corresponding  $S_i$ ):  $D = \{i \in \mathbb{N} \mid i \in S_i\}$
  - (*i* is not in corresponding  $S_i$ ):  $\overline{D} = \{i \in \mathbb{N} \mid i \notin S_i\}$
  - $\overline{D} = \mathbb{N} D$ , that is,  $\overline{D}$  is a valid subset of  $\mathbb{N}$ :  $\exists k$  such that  $S_k = \overline{D}$
  - What is the contradiction?

# Cantor's Diagnolizational Argument

- This is an example of diagnolizational argument
- Visualize where  $S_k$  appears on the diagonal
- Fun soviet version:
  - <u>https://algorithmsoup.wordpress.com/2018/09/18/soviet-version-of-cantors-diagonalization-argument/</u>

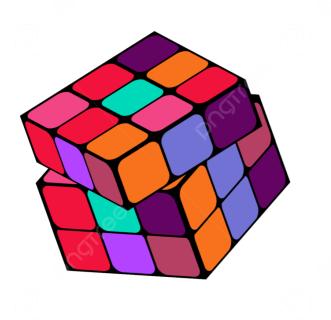
# Countability and Languages

- Recall, we said that a set A is **encodable** if there is a one-to-one function  $\mathrm{Enc}:A\to\Sigma^*$  for some finite alphabet  $\Sigma$ 
  - Thus, the size of any encodable set is *at most* the size of  $\Sigma^*$
- As we can encode any CS program/Turing machine using a finite alphabet, the set of such programs/Turing machines is countable
- However, the power set  $\mathscr{P}(\Sigma^*)$  is uncountable
  - Similar argument as to power set of natural numbers
  - That is, there are uncountably many languages over any alphabet
- **Takeaway**: can only encode countable things, but uncountably many "decidable problems" to solve  $\implies$  existence of undecidable problems
  - What do these problems look like?

# Finite State Automata

## Simplest Form of Computation



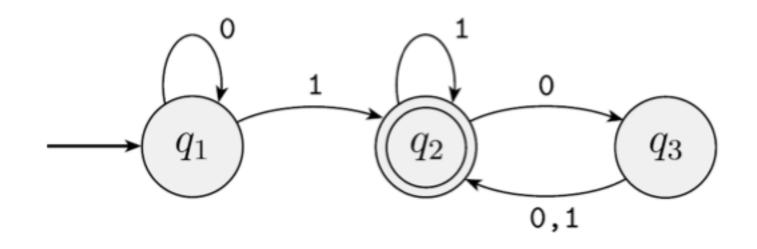






#### Example: Deterministic Finite Automata

- We will study computation through the lens of languages
- A machine recognizes a language (akin to listening)
  - If a given input string is in a language, the machine will "accept" (output true), otherwise "reject" (output false)
- **Question.** What language is recognized by this machine?
  - Try some example strings

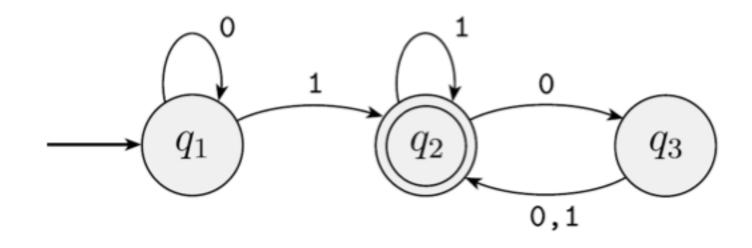




## Definition of a Finite Automaton

A finite automaton is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

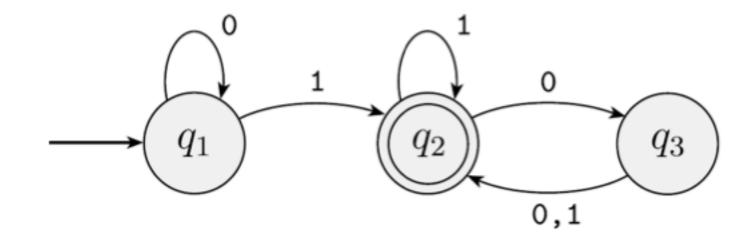
- Q is a finite set called the states,
- $\Sigma$  is a finite set called the alphabet,
- $\delta: Q \times \Sigma \to Q$  is the transition function,
- $q_o \in Q$  is the start state and  $F \subseteq Q$  is the set of accept states.





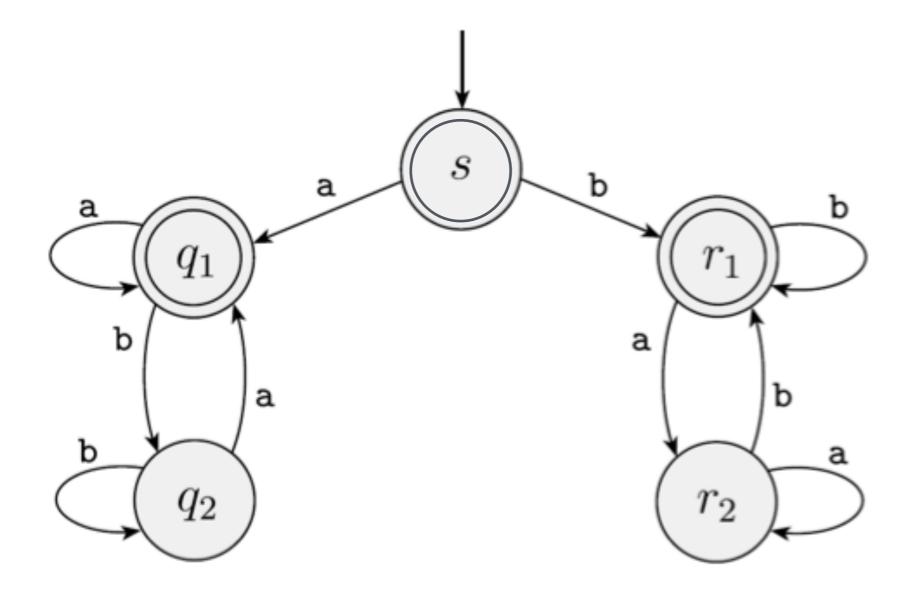
# Language of a Machine

- The set of all strings accepted by a finite automaton M is called the language of machine M, and is written L(M).
  - Say M recognizes language L(M)
- We will define M accepts w more formally
- Intuitive it is the strings on which it reaches an accepting state





## What Language?



## Automaton Computation

• Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a finite automaton and let  $w = w_1 w_2 \cdots w_n$  be a string where each  $w_i \in \Sigma$ . Then *M* accepts *w* if there is a sequence of  $r_0, r_1, \dots, r_n$  in *Q* such that

•  $r_0 = q_0$ 

- $\delta(r_i, w_{i+1}) = r_{i+1}$  for i = 0, 1, ..., n-1 and
- $r_n \in F$



## Extended Transition Function

- Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a DFA
- Transition function  $\delta: Q \times \Sigma \to Q$  is often extended to  $\delta^*: Q \times \Sigma^* \to Q$  where  $\delta^*(q, w)$  is defined as the state the DFA ends up in if it starts at q and reads the string w
- Alternate definition of M accepts  $w \iff \delta^*(q_0, w) \in F$



## Regular Languages

- A language is called a regular language if some finite automaton recognizes it.
- Seen examples of the following regular languages today:
- $L(M_1) = \{w \mid w \text{ contains at least one } 1 \text{ and an even number of zeroes follow the last } 1\}$
- $L(M_2) = \{w \mid w \in \{a, b\}^* \text{ that starts and ends with the same symbol}\}$

