CSCl| 361 Lecture |8:

Classes P and NP

Shikha Singh



Announcements & Logistics

Hand reading assignment # |2
Pick up reading assignment # |3
HW 7 due tomorrow |0 pm
Office hours today:

2.15 to 3.45 pm (|5 early)



L ast [ Ime

Wrapped up Computability Theory

Started discussion of time complexity
Zoom In on decidable problems
How long does 1t take to decide/solve them!?
Extended Church-Turing thesis

Polynomial time in input: decidable in "reasonable time”



loday

ime complexity comparison of multi-tape and nondeterministic

Revisit classes P and NP using Turing machine terminology

Ms



Time Complexity Class

Definition. Let 7 : N — N be a function. The time complexity class,
TIME(t(n)) , is

TIME(t(n)) = {L | L is decided by a TM in O(t(n)) steps}



Complexity Class P

Definition. P is the class of languages that are decidable in polynomial

time on a single-tape Turing machine. That is,

P = U, TIME(n")



Extended Church Turing Thesis

Everyone's inturtive notion of
efficient algorithms

= polynomial-time algorithms

 Much more controversial:

. Is O(n'Y) efficient?

 Randomized algorithms/ quantum algorithms can do much better



Extended Church Turing Thesis

Everyone's inturtive notion of

efficient algorithms

= polynomial-time algorithms

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n3 1.5" 28 n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 <lsec <l1lsec <1 sec < 1 sec < 1 sec 18 min  10%° years
n=>50 < 1 sec < 1sec < 1 sec < 1 sec 11 min 36 years very long

n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long

n =1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long




Two Tapes Can be More Efficient

» How quickly can we decide the language A = {0"1" | n > 0} on a
two tape T™M!

- Can do this in O(n) time

- Takeaway: Different models of computation can yield different
running times for the same language!

» Let's revisit multi-tape TM to single tape reduction with the lens of
complexity theory



Multritape T™ to Single Tape TM

» Theorem. Every t(n)-time multi-tape TM has an equivalent
O(t*(n))-time single-tape TM, where t(n) > n.

M 1
alalalu
Oy
b|la|u
S + [ } [ }
#(0|1|0(1|O0|#|alala|#|b|la|#]|uU

- Takeaway: Both models are polynomially-equivalent.



How About Non-Determinism!?

 Definition. Let M be a non-deterministic T™ that halts on all inputs.

The running time or time complexity of M is the function f: N — N,
where f(n) is the maximum number of steps that M takes on any

branch of its computation on any input of length n.

Deterministic Nondeterministic

l } _accept/reject l _reject l



How About Non-Determinism!?

» Theorem. Every t(n)-time non-deterministic TM has an equivalent
R0UM)_time deterministic TM, where #(n) > n.

Deterministic Nondeterministic

| |
f(n) reject” f(n)

l _accept

l { _accept/reject l _ reject l

- Takeaway: NTM is not polynomially-equivalent to a DTM.



Problems in P

Studied extensively in CSCI 256, but will use "language terminology”

Examples in the book:

PATH = {(G, s,t) | Given graph G and nodes s, t there is a path from s — t}

RELPRIME = {(x,y) | x,y are relatively prime }
- Acrg = {{(G,w) | GisaCFGand w € L(G)}

Parsing problem for CFGs

Let's look at the last one: discuss a common parsing algorithm

One-off example of a dynamic program



Chomsky Normal Form

* Algorithm described in book: CYK Parsing Algorithm (by John
Cocke, Daniel Younger, and Tadao Kasami)

- Assumes G is in CNF:

« All rules are of the form A — BC, A — b
- Additionally allow § — €

+ Converting a grammar to CNF incurs constant-factor blow up In size



CYK Parsing Algorithm

+ Letthe inputw =w;...w_. Goal: Does there exists a derivation

S — .- = w,_ using the rules of G

- table[ i, j ] = variables of G that generate substring ww,;...w;

+ How do we find out if wis in L(G)?

- Checkif S € table [1 , n]

- Base case!

» Handle w = € by checkingif s — ¢

» Fill out the diagonal: table [i,i] = A IfA — w,



CYK Parsing Algorithm

+ Next step: all substrings of length 2

- fori=1,..
- For each
i+ 1,1

on—1

rule A — BC, if table|i, i] contains B and
+ 1] contains C,then add A to [i, i + 1]

» Substring of length 3 and so on,

+ Need a "sp

wlk+ 1, j]

t" point k such that if w[i, k] is generated by B and
s generated by C and A — BC, add A to table[i, j]



CYK Parsing Algorithm

D = “On input w = wy - - - Wy
1. Forw =¢,if S — eisarule, accept; else, reject. [w = € case]
2. Fori=1ton: [ examine each substring of length 1]

3.  For each variable A:
4. "Test whether A — b is a rule, where b = w;.
5. If so, place A in table(i,1).
6. Forl=2ton: [ 1 is the length of the substring |
7. Fori=1ton — [+ 1: [iis the start position of the substring |
8. Letj=4¢4+1—1. [ j is the end position of the substring |
9. Fork =itoj — 1: [ & is the split position |
10. For each rule A — BC:"
11. If table(i, k) contains B and table(k + 1,7j) contains
C, put A in table(i, 7).
12. If S'isin table(1,n), accept; else, reject.”



CYK Parsing 1s in P

- Running time of CYK parsing is O(n°)

+ Thus, verifying if a given CFG generates a given string is in P



Jlowards NP

* Definition. Let7: N — N be a function. The time complexity class,

NTIME(#(n)) , is
NTIME(t(n)) = {L | L is decided by an NTM in O(t(n)) steps}

Deterministic Nondeterministic

l J _accept/reject i _reject l



Complexity Class NP: Definrtion |

Definition. NP is the class of languages that are decidable In

polynomial time on non-deterministic Turing machine. That is,

NP = U, NTIME(1)



Complexity Class NP: Definrtion 2

(Algorithms analog.) NP is the class of languages that have

"polynomial-time verifiers"
Definition. A verifier for a language A is an algorithm V such that
A = {w | Vaccepts (w, c) for some string c}
- Foreach w € A, there exists a string ¢ sit. V accepts (w,c) iff w € A
+ A polynomial-time verifier V runs in polynomial time in | w |

* Here c is a certificate: polynomial-length string, | c| = poly(|w])

* Eg.
HAMPATH = {(G, s, t) | G is a directed graph with a Hamiltonian path from s to ¢}



HAMPATH In NP

HAMPATH = {(G, s,t) | G is a directed graph with a Hamiltonian path from s to ¢}

For each "yes" instance (G, s, t), a certificate ¢ is just a Hampath from s to ¢

» Following is a polynomial-time verifier:

+ Oninput ({G, s, 1), c),

Check if ¢ is a valid permutation of the nodes of G: that is, every node is
present with no repetitions; reject if not

Check if ¢ starts with s and ends with f; reject if not

Check if each adjacent pair of nodes correspond to an edge in G; reject if
not

If all checks pass, ¢ represents a valid Hamiltonian path from s to ¢ in G and
SO accept



Hamiltonian Path

- Non-deterministic Turing machine!



Equivalent Definrtions

- Theorem. A language can be decided by a NTM in polynomial time
it and only If it has a polynomial time verifier.

- Proof outline.

» Suppose It can be decided by a NTM, what Is the certificate that
an inputw € L!

* Suppose It has a polynomial-time verifier, what should a NTM
"ouess” to show w € L

» Takeaway: Class NP is the "one-sided" analog of Turing recognizable.



