CSCI 361 Lecture 18: Classes P and NP

Shikha Singh

Announcements & Logistics

- Hand reading assignment # 12
- Pick up **reading assignment # 13**
- HW 7 due tomorrow 10 pm
- Office hours today:
 - **2.15 to 3.45 pm** (15 early)

LastTime

- Wrapped up Computability Theory
- Started discussion of time complexity
 - Zoom in on decidable problems
 - How long does it take to decide/solve them?
 - Extended Church-Turing thesis
 - Polynomial time in input: decidable in "reasonable time"

Today

- Time complexity comparison of multi-tape and nondeterministic TMs
- Revisit classes P and NP using Turing machine terminology

Time Complexity Class

Definition. Let $t : \mathbb{N} \to \mathbb{N}$ be a function. The time complexity class, TIME(t(n)), is

 $TIME(t(n)) = \{L \mid L \text{ is decided by a TM in } O(t(n)) \text{ steps} \}$

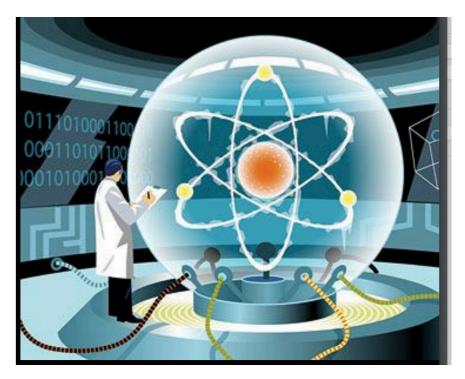
Complexity Class P

Definition. P is the class of languages that are decidable in polynomial time on a single-tape Turing machine. That is,

$$\mathsf{P} = \mathsf{U}_k \mathsf{TIME}(n^k)$$

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms = polynomial-time algorithms



- Much more controversial:
 - Is $O(n^{10})$ efficient?
 - Randomized algorithms/ quantum algorithms can do much better

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms

= polynomial-time algorithms

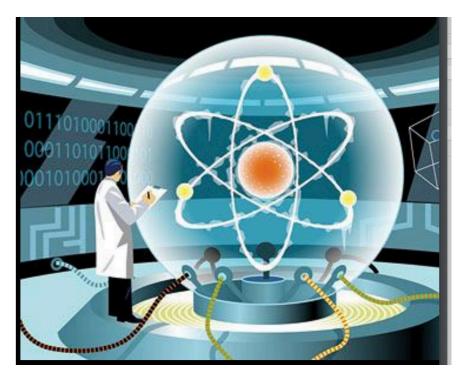


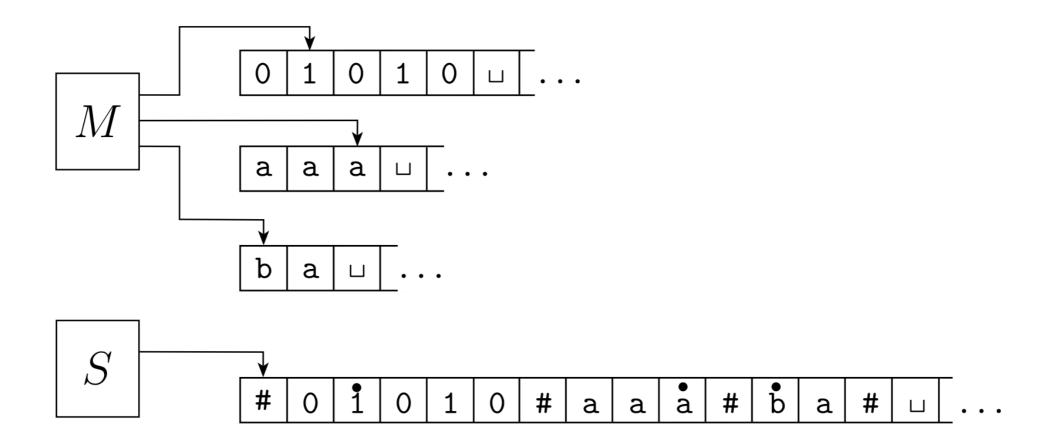
	Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second In cases where the running time exceeds 10 ²⁵ years, we simply record the algorithm at taking a very long time.						
	п	$n \log_2 n$	<i>n</i> ²	n ³	1.5 ⁿ	2 ^{<i>n</i>}	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Two Tapes Can be More Efficient

- How quickly can we decide the language $A = \{0^n 1^n \mid n \ge 0\}$ on a two tape TM?
 - Can do this in O(n) time
- **Takeaway:** Different models of computation can yield different running times for the same language!
- Let's revisit multi-tape TM to single tape reduction with the lens of complexity theory

Multitape TM to Single Tape TM

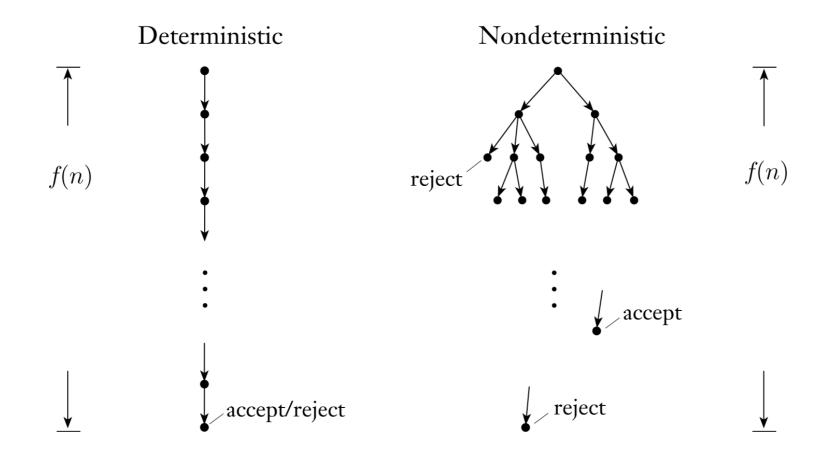
• **Theorem.** Every t(n)-time multi-tape TM has an equivalent $O(t^2(n))$ -time single-tape TM, where $t(n) \ge n$.



• **Takeaway:** Both models are polynomially-equivalent.

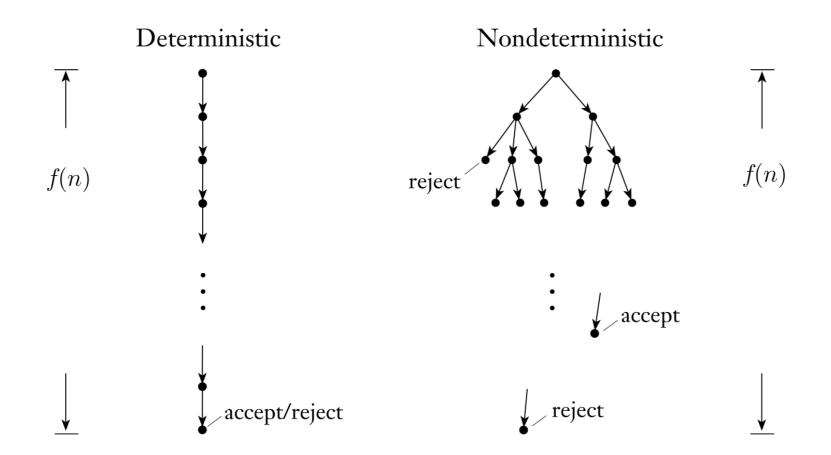
How About Non-Determinism?

• **Definition.** Let M be a non-deterministic TM that halts on all inputs. The running time or time complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M takes on any branch of its computation on any input of length n.



How About Non-Determinism?

• Theorem. Every t(n)-time non-deterministic TM has an equivalent $2^{O(t(n))}$ -time deterministic TM, where $t(n) \ge n$.



• **Takeaway:** NTM is not polynomially-equivalent to a DTM.

Problems in P

- Studied extensively in CSCI 256, but will use "language terminology"
- Examples in the book:
 - PATH = { $\langle G, s, t \rangle$ | Given graph G and nodes s, t there is a path from $s \to t$ }
 - RELPRIME = { $\langle x, y \rangle \mid x, y \text{ are relatively prime }$
 - $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG and } w \in L(G) \}$
 - Parsing problem for CFGs
- Let's look at the last one: discuss a common parsing algorithm
- One-off example of a dynamic program

Chomsky Normal Form

- Algorithm described in book: CYK Parsing Algorithm (by John
 Cocke, Daniel Younger, and Tadao Kasami)
- Assumes G is in CNF:
 - All rules are of the form $A \rightarrow BC$, $A \rightarrow b$
 - Additionally allow $S \rightarrow \varepsilon$
- Converting a grammar to CNF incurs constant-factor blow up in size

CYK Parsing Algorithm

- Let the input $w = w_1 \dots w_n$. Goal: Does there exists a derivation $S \to \dots \to w_n$ using the rules of G
- table [i, j] = variables of G that generate substring $w_i w_{i+1} \dots w_j$
 - How do we find out if w is in L(G)?
 - Check if $S \in table [1, n]$
- Base case?
 - Handle $w = \varepsilon$ by checking if $s \to \varepsilon$
 - Fill out the diagonal: table [i, i] = A if $A \rightarrow w_i$

CYK Parsing Algorithm

- Next step: all substrings of length $2 \$
 - for i = 1, ..., n 1
 - For each rule $A \rightarrow BC$, if table[i, i] contains B and [i + 1, i + 1] contains C, then add A to [i, i + 1]
- Substring of length 3 and so on,
 - Need a "split" point k such that if w[i, k] is generated by B and w[k + 1, j] is generated by C and $A \rightarrow BC$, add A to table[i, j]

CYK Parsing Algorithm

D = "On input $w = w_1 \cdots w_n$: 1. For $w = \varepsilon$, if $S \to \varepsilon$ is a rule, *accept*; else, *reject*. $[w = \varepsilon \text{ case}]$ **2.** For i = 1 to n: examine each substring of length 1 3. For each variable A: 4. Test whether $A \rightarrow b$ is a rule, where $b = w_i$. 5. If so, place A in table(i, i). 6. For l = 2 to n: *I* is the length of the substring 7. For i = 1 to n - l + 1: [*i* is the start position of the substring] 8. Let j = i + l - 1. [*j* is the end position of the substring] For k = i to j - 1: 9. [k is the split position] For each rule $A \rightarrow BC$: 10. If table(i,k) contains B and table(k+1,j) contains 11. C, put A in table(i, j).

12. If S is in table(1, n), accept; else, reject."

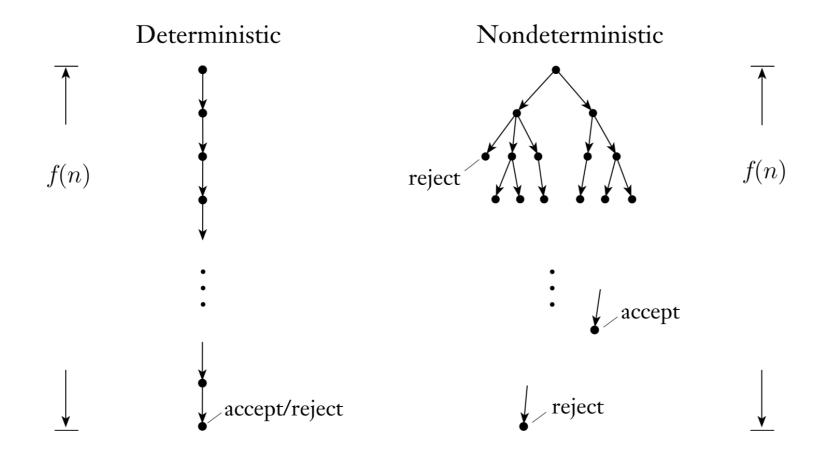
CYK Parsing is in P

- Running time of CYK parsing is $O(n^3)$
- Thus, verifying if a given CFG generates a given string is in ${\bf P}$

Towards NP

• **Definition.** Let $t : \mathbb{N} \to \mathbb{N}$ be a function. The time complexity class, NTIME(t(n)), is

 $NTIME(t(n)) = \{L \mid L \text{ is decided by an NTM in } O(t(n)) \text{ steps} \}$



Complexity Class NP: Definition I

Definition. NP is the class of languages that are decidable in polynomial time on non-deterministic Turing machine. That is,

 $NP = U_k NTIME(n^k)$

Complexity Class NP: Definition 2

(Algorithms analog.) NP is the class of languages that have "polynomial-time verifiers"

Definition. A verifier for a language A is an algorithm V such that

 $A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}$

- For each $w \in A$, there exists a string c s.t. V accepts $\langle w, c \rangle$ iff $w \in A$
- A polynomial-time verifier V runs in polynomial time in |w|
- Here c is a **certificate**: polynomial-length string, |c| = poly(|w|)
- Eg. HAMPATH = { $\langle G, s, t \rangle$ | G is a directed graph with a Hamiltonian path from s to t}

HAMPATH in NP

- HAMPATH = { $\langle G, s, t \rangle$ | G is a directed graph with a Hamiltonian path from s to t}
- For each "yes" instance $\langle G, s, t \rangle$, a certificate c is just a Hampath from s to t
- Following is a polynomial-time verifier:
 - On input $\langle \langle G, s, t \rangle, c \rangle$,
 - Check if c is a valid permutation of the nodes of G: that is, every node is present with no repetitions; reject if not
 - Check if c starts with s and ends with t; reject if not
 - Check if each adjacent pair of nodes correspond to an edge in G; reject if not
 - If all checks pass, c represents a valid Hamiltonian path from s to t in G and so accept

Hamiltonian Path

• Non-deterministic Turing machine?

Equivalent Definitions

- **Theorem.** A language can be decided by a NTM in polynomial time if and only if it has a polynomial time verifier.
- Proof outline.
 - Suppose it can be decided by a NTM, what is the certificate that an input $w \in L$?
 - Suppose it has a polynomial-time verifier, what should a NTM "guess" to show $w \in L$

• Takeaway: Class **NP** is the "one-sided" analog of Turing recognizable.