
CSCI 361 Lecture 18:
Classes P and NP

Shikha Singh

Announcements & Logistics
• Hand reading assignment # 12

• Pick up reading assignment # 13

• HW 7 due tomorrow 10 pm

• Office hours today:

• 2.15 to 3.45 pm (15 early)

Last Time
• Wrapped up Computability Theory

• Started discussion of time complexity

• Zoom in on decidable problems

• How long does it take to decide/solve them?

• Extended Church-Turing thesis

• Polynomial time in input: decidable in "reasonable time"

Today
• Time complexity comparison of multi-tape and nondeterministic TMs

• Revisit classes P and NP using Turing machine terminology

Time Complexity Class
Definition. Let be a function. The time complexity class,

 , is

t : ℕ → ℕ
TIME(t(n))

TIME(t(n)) = {L | L is decided by a TM in O(t(n)) steps}

Complexity Class P

Definition. is the class of languages that are decidable in polynomial
time on a single-tape Turing machine. That is,

P

P = ∪k TIME(nk)

Extended Church Turing Thesis

Everyone's intuitive notion of
efficient algorithms

= polynomial-time algorithms

• Much more controversial:

• Is efficient?

• Randomized algorithms/ quantum algorithms can do much better

O(n10)

Extended Church Turing Thesis

Everyone's intuitive notion of
efficient algorithms

= polynomial-time algorithms

Two Tapes Can be More Efficient
• How quickly can we decide the language on a

two tape TM?

• Can do this in time

• Takeaway: Different models of computation can yield different
running times for the same language!

• Let's revisit multi-tape TM to single tape reduction with the lens of
complexity theory

A = {0n1n | n ≥ 0}

O(n)

Multitape TM to Single Tape TM
• Theorem. Every -time multi-tape TM has an equivalent

-time single-tape TM, where .
t(n)

O(t2(n)) t(n) ≥ n

• Takeaway: Both models are polynomially-equivalent.

• Definition. Let be a non-deterministic TM that halts on all inputs.
The running time or time complexity of is the function ,
where is the maximum number of steps that takes on any
branch of its computation on any input of length .

M
M f : ℕ → ℕ

f(n) M
n

How About Non-Determinism?

• Theorem. Every -time non-deterministic TM has an equivalent
-time deterministic TM, where .

t(n)
2O(t(n)) t(n) ≥ n

How About Non-Determinism?

• Takeaway: NTM is not polynomially-equivalent to a DTM.

Problems in 𝖯

• Studied extensively in CSCI 256, but will use "language terminology"

• Examples in the book:

•

•

•

• Parsing problem for CFGs

• Let's look at the last one: discuss a common parsing algorithm

• One-off example of a dynamic program

PATH = {⟨G, s, t⟩ | Given graph G and nodes s, t there is a path from s → t}

RELPRIME = {⟨x, y⟩ | x, y are relatively prime }

ACFG = {⟨G, w⟩ | G is a CFG and w ∈ L(G)}

Chomsky Normal Form

• Algorithm described in book: CYK Parsing Algorithm (by John
Cocke, Daniel Younger, and Tadao Kasami)

• Assumes is in CNF:

• All rules are of the form ,

• Additionally allow

• Converting a grammar to CNF incurs constant-factor blow up in size

G

A → BC A → b

S → ε

CYK Parsing Algorithm

• Let the input . Goal: Does there exists a derivation
 using the rules of

• = variables of that generate substring

• How do we find out if is in ?

• Check if

• Base case?

• Handle by checking if

• Fill out the diagonal: if

w = w1…wn
S → ⋯ → wn G

table[i, j] G wiwi+1…wj

w L(G)

S ∈ table [1 , n]

w = ε s → ε

table [i, i] = A A → wi

CYK Parsing Algorithm

• Next step: all substrings of length

• for

• For each rule , if table contains and
 contains , then add to

• Substring of length 3 and so on,

• Need a "split" point such that if is generated by and
 is generated by and , add to

2

i = 1,…, n − 1

A → BC [i, i] B
[i + 1, i + 1] C A [i, i + 1]

k w[i, k] B
w[k + 1, j] C A → BC A table[i, j]

CYK Parsing Algorithm

CYK Parsing is in 𝖯

• Running time of CYK parsing is

• Thus, verifying if a given CFG generates a given string is in

O(n3)

𝖯

• Definition. Let be a function. The time complexity class,
 , is

t : ℕ → ℕ
NTIME(t(n))

NTIME(t(n)) = {L | L is decided by an NTM in O(t(n)) steps}

Towards NP

Complexity Class NP: Definition 1

Definition. is the class of languages that are decidable in
polynomial time on non-deterministic Turing machine. That is,

NP

NP = ∪k NTIME(nk)

Complexity Class NP: Definition 2
(Algorithms analog.) is the class of languages that have
"polynomial-time verifiers"

Definition. A verifier for a language is an algorithm such that

• For each , there exists a string s.t. accepts iff

• A polynomial-time verifier runs in polynomial time in

• Here is a certificate: polynomial-length string,

• Eg.

NP

A V

A = {w | V accepts ⟨w, c⟩ for some string c}

w ∈ A c V ⟨w, c⟩ w ∈ A

V |w |

c |c | = poly(|w |)

HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t}

HAMPATH in NP
•

• For each "yes" instance , a certificate is just a Hampath from to

• Following is a polynomial-time verifier :

• On input ,

• Check if is a valid permutation of the nodes of : that is, every node is
present with no repetitions; reject if not

• Check if starts with and ends with ; reject if not

• Check if each adjacent pair of nodes correspond to an edge in ; reject if
not

• If all checks pass, represents a valid Hamiltonian path from to in and
so accept

HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t}

⟨G, s, t⟩ c s t

⟨⟨G, s, t⟩, c⟩

c G

c s t

G

c s t G

Hamiltonian Path
• Non-deterministic Turing machine?

Equivalent Definitions
• Theorem. A language can be decided by a NTM in polynomial time

if and only if it has a polynomial time verifier.

• Proof outline.

• Suppose it can be decided by a NTM, what is the certificate that
an input ?

• Suppose it has a polynomial-time verifier, what should a NTM
"guess" to show

• Takeaway: Class is the "one-sided" analog of Turing recognizable.

w ∈ L

w ∈ L

𝖭𝖯

