CSCI 361 Lecture |/
Undecidability Wrap Up &
Intro to Complexity Theory

Shikha Singh

Announcements & Logistics

Pick up reading assignment # |2
HW 5 graded feedback returned
HW 6 deadline extended to tonight at 10 pm
Examples in textbook and slides: how to describe TM's

Provide the input, step-by-step algorithm, and final output (accept/
reject)

Argue why your reductions are correct: if and only if statement
HW 7 will be posted today and due next Wed

Second to last homework

L ooking Ahead

5> more lectures left before Thanksgiving break
2 more assignments (HW 7 and 8)
Survey paper logistics
Investigate an advanced topic of your interest related to ToC
Encouraged to work in pairs but don't have to
WIll post examples of topics and resources next week
Google form choosing partner and tentative topic: Nov 20
| page draft of background due Nov 26

Class presentation: Dec 5 and short paper (3 pages) due Dec 6

L ast [Ime

Described the computation-history-method to prove undecidability

Proved that ALLE and PCP are undecidable by encoding

computation histories

loday

Wrap up computability theory
Start complexity theory

In the coming weeks:

Classes P NP EXP
P vs NP

NP hardness and NP Completeness

Post Correspondence Problem

» An Instance of the Post correspondence problem (PCP) is two
sequences A = (a, ay, ...,a,) and B = (by, b,, ..., b,,) of strings
where a;, b; € X*

+ Problem. Does there exist a finite sequence iy, 1, ..., [where each

i.is an index from 1,...,m such that a.a. ...a: = b. b. ...b.
J SR) Lk S) Lk

» Alternate Formulation: An input is a collection of dominos each

al faf]

containing two strings b Pl KR I and the goal Is to find
i b

a sequence of these dominoes (repetitions are allowed) such that the
string formed by concatenating the top Is the same as the string

formed by concatenating the bottom

Post Correspondence Problem

- PCP example: E.g. Consider

e (&) [)

A possible solution

Reductions from PCP

* Theorem. (Last Class) PCP is undecidable.

* HW 7 problem: Reduce PCP to show that

NcrG = (G, Gy) | Gy, G, are CFGs such that L(Gy) N L(G,) = @}
s undecidable.

* Hint: Given PCP instance (A, B), create CFLs L, and Ly as follows:

A —> CllAll | azAlz | so | amAlm
A —> alil | aziz | *ee | amim
B = by | byiy | ==+ | by,

» What strings do they generate! Can we solve PCP using N decider?

Undecidability lakeaways

- Almost all properties of regular languages are decidable

- Lots of undecidable problems about CFGs

+ Let Gy, G, be CFGs and R be a regular expression, then the

following questions are undecidable;

s L(Gy) = L(Gy) !

s L(Gy) = L(R) !

s L(G)) € L(G,)

» Is L(R) C L(Gy)!

- Deciding any non-trivial property of TM Is undecida

dle

» This Is a motivation for studying restricted models o

" computation

Our Picture

- Final Question. Is there a language L such that L is not Turing

recognizable and L is also not Turing recognizable.

* Recall. IfA £, B and A is not Turing recognizable, then B is not

Turing recognizable.

All languages

Class Exercise

+ Theorem. EQTp Is nerther Turing recognizable nor co-Turing

recognizable (its complement is not Turing recognizable).

* Proof outline.

» To show EQTp Is not Turing recognizable, need to reduce a
known Turing unrecognizable language to 1t
» Show that AT1pm <, EQTM and Am <, ETM

- How does this prove the theorem!?

- Mapping reductions are closed under complement!

Com

All

bleted Picture of Computabillity

Languages

®EOTM

not co-Turing-recognizable

Turing-recognizable

decidable

context-free

Complexity Theory

Complexity Theory

* S0 far, we were focused on computabllity theory

- What problems can and cannot be solved by various models of a
computer (starting from most restricted to most powerful)

- Now, we want to ask the question:

- What problem can be efficiently solved by a computer?

» CSCI 256 covers all about algorithmic design strategies as well as

analysis tools

- This class: Assume that you know this and won't focus on it

» Instead focus on classifying complexity of CFGs, TMs, etc as well as

reductions to prove problems are NP complete

How to Measure Efficiency

- Time complexity as number of steps
- Complexity measured as a function of input size

+ Worst case notion: for any inputs of size n

Definition. Let M be a deterministic Turing machine that halts on all
inputs. The running time or time complexity of M is the function
f: N = N, where f(n) is the maximum number of steps that M takes

on any Input of length n.

Asymptotic Analysis

+ As covered in CSCI 256, we don't care about time complexity on
small inputs but rather how It grows as n becomes large

- Review asymptotic notation to do this: Big O, Little O

Definition. We say that f(n) = O(g(n)) if positive integers ¢ and n,
exist such that for every n > ny

fn) < c - gn)

=0

S)
efinition. We say f(n) = o(g(n)) if Iim
n—oco g(1)

Exercise: True or False!
. 8n+ 35 =0(n)

- 10001 4+ 4/n = o(n)

- m/n = 0(n?)

- /n = o(n)

- log,n = o(Inn)

. nloglogn = o(nlogn)

Time Complexity Class

Definition. Let 7 : N — N be a function. The time complexity class,
TIME(t(n)) , is

TIME(t(n)) = {L | L is decided by a TM in O(t(n)) steps}

Time Complexity Example

Consider a TM M for for the language A = {0"1" | n > 0}
M = "On input string w,
|, Scan across the tape and reject if a O Is found to the right of a |.
2. Repeat the following if both Os and |s remain.
|. Scan across tape, crossing off a single O and a single |.
3. Iferther O or | remains, reject. Otherwise, accept.”
+ Time complexity?

- Can we do better?

Fun Fact

+ Let f(n) = o(nlogn). TIME(f(n)) contains only regular languages!

Two Tapes Can be More Efficient

» How quickly can we decide the language A = {0"1" | n > 0} on a
two tape T™M!

- Can do this in O(n) time

- Takeaway: Different models of computation can yield different
running times for the same language!

» Let's revisit multi-tape TM to single tape reduction with the lens of
complexity theory

Multritape T™ to Single Tape TM

» Theorem. Every t(n)-time multi-tape TM has an equivalent
O(t*(n))-time single-tape TM, where t(n) > n.

M 1
alalalu
Oy
b|la|u
S + [} [}
#(0|1|0(1|O0|#|alala|#|b|la|#]|uU

- Takeaway: Both models are polynomially-equivalent.

How About Non-Determinism!?

 Definition. Let M be a non-deterministic T™ that halts on all inputs.

The running time or time complexity of M is the function f: N — N,
where f(n) is the maximum number of steps that M takes on any

branch of its computation on any input of length n.

Deterministic Nondeterministic

l } _accept/reject l _reject l

How About Non-Determinism!?

» Theorem. Every t(n)-time non-deterministic TM has an equivalent
R0UM)_time deterministic TM, where #(n) > n.

Deterministic Nondeterministic

| |
f(n) reject” f(n)

l _accept

l { _accept/reject l _ reject l

- Takeaway: NTM is not polynomially-equivalent to a DTM.

Complexity Class P

Definition. P is the class of languages that are decidable in polynomial

time on a single-tape Turing machine. That is,

P = U, TIME(n")

Extended Church Turing Thesis

Everyone's inturtive notion of
efficient algorithms

= polynomial-time algorithms

 Much more controversial:

. Is O(n'Y) efficient?

 Randomized algorithms/ quantum algorithms can do much better

Extended Church Turing Thesis

Everyone's inturtive notion of

efficient algorithms

= polynomial-time algorithms

Table 2.1 The running times (rounded up) of different algorithms on inputs of
increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10%° years, we simply record the algorithm as

taking a very long time.

n nlog, n n? n3 1.5" 28 n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

n =30 <lsec <l1lsec <1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1sec < 1 sec < 1 sec 11 min 36 years very long

n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long

n =1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long

Jlowards NP

* Definition. Let7: N — N be a function. The time complexity class,

NTIME(#(n)) , is
NTIME(t(n)) = {L | L is decided by an NTM in O(t(n)) steps}

Deterministic Nondeterministic

l J _accept/reject i _reject l

Complexity Class NP

Definition. NP is the class of languages that are decidable In

polynomial time on non-deterministic Turing machine. That is,

NP = U, NTIME(1)

