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Announcements & Logistics
• Pick up reading assignment # 12 

• HW 5 graded feedback returned


• HW 6 deadline extended to tonight at 10 pm


• Examples in textbook and slides: how to describe TM's


• Provide the input, step-by-step algorithm, and final output (accept/
reject)


• Argue why your reductions are correct:  if and only if statement


• HW 7 will be posted today and due next Wed


• Second to last homework



Looking Ahead
• 5 more lectures left before Thanksgiving break


• 2 more assignments (HW 7 and 8)


• Survey paper logistics


• Investigate an advanced topic of your interest related to ToC 


• Encouraged to work in pairs but don't have to


• Will post examples of topics and resources next week


• Google form choosing partner and tentative topic:   Nov 20


• 1 page draft of background due Nov 26


• Class presentation:  Dec 5 and short paper (3 pages) due Dec 6



Last Time
• Described the computation-history-method to prove undecidability


• Proved that  and PCP are undecidable by encoding 
computation histories

ALLCFG



Today
• Wrap up computability theory 

• Start complexity theory 


• In the coming weeks:


• Classes P,  NP,  EXP


• P vs NP


• NP hardness and NP Completeness



Post Correspondence Problem
• An instance of the Post correspondence problem (PCP) is two 

sequences  and  of strings 
where 

• Problem.  Does there exist a finite sequence  where each 
 is an index from  such that  

• Alternate Formulation:  An input is a collection of dominos each 

containing two strings  and the goal is to find 

a sequence of these dominoes (repetitions are allowed) such that the 
string formed by concatenating the top is the same as the string 
formed by concatenating the bottom 

A = (a1, a2, …, am) B = (b1, b2, …, bm)
ai, bi ∈ Σ*

i1, i2, …, ik
ij 1,…, m ai1ai2…aik = bi1bi2…bik

[ a1

b1 ], [ a2

bb ], …, [ am

bm ]



Post Correspondence Problem
• PCP example: E.g.  Consider 

• A possible solution 



Reductions from PCP
• Theorem. (Last Class)  PCP is undecidable.  

• HW 7 problem:  Reduce PCP to show that


is undecidable.

• Hint:  Given PCP instance , create CFLs  and  as follows:


 

• What strings do they generate?  Can we solve PCP using  decider?

∩CFG = {⟨G1, G2⟩ | G1, G2 are CFGs such that L(G1) ∩ L(G2) = ∅}

(A, B) LA LB

A → a1Ai1 | a2Ai2 | ⋯ | amAim
A → a1i1 | a2i2 | ⋯ | amim

B → b1Bi1 | b2Bi2 | ⋯ | bmBim
B → b1i1 | b2i2 | ⋯ | bmim

∩CFG



Undecidability Takeaways
• Almost all properties of regular languages are decidable

• Lots of undecidable problems about  CFGs


• Let  be CFGs and  be a regular expression, then the 
following questions are undecidable:

• Is  ?

• Is  ?

• Is ?

• Is ?


• Deciding any non-trivial property of  TM is undecidable 

• This is a motivation for studying restricted models of computation

G1, G2 R

L(G1) = L(G2)
L(G1) = L(R)
L(G1) ⊆ L(G2)
L(R) ⊆ L(G1)



Our Picture

All languages

ATM

ATM

• Final Question.   Is there a language  such that  is not Turing 
recognizable and  is also not Turing recognizable.


• Recall.  If  and  is not Turing recognizable, then  is not 
Turing recognizable.

L L
L

A ≤m B A B



• Theorem.   is neither Turing recognizable nor co-Turing 

recognizable (its complement is not Turing recognizable).

• Proof outline.


• To show  is not Turing recognizable, need to reduce a 
known Turing unrecognizable language to it


• Show that  and 
• How does this prove the theorem?

• Mapping reductions are closed under complement!

EQTM

EQTM

ATM ≤m EQTM ATM ≤m EQTM

Class Exercise



Completed Picture of Computability

ATMATM

not co-Turing-recognizable 
EQTM

All Languages



Complexity Theory



Complexity Theory
• So far, we were focused on computability theory


• What problems can and cannot be solved by various models of a 

computer (starting from most restricted to most powerful)


• Now, we want to ask the question: 

• What problem can be efficiently solved by a computer?


• CSCI 256 covers all about algorithmic design strategies as well as 
analysis tools

• This class:  Assume that you know this and won't focus on it


• Instead focus on classifying complexity of  CFGs, TMs, etc as well as 
reductions to prove problems are NP complete



How to Measure Efficiency 
• Time complexity as number of steps

• Complexity measured as a function of input size

• Worst case notion:   for any inputs of size  

Definition.  Let  be a deterministic Turing machine that halts on all 
inputs.  The running time or time complexity of  is the function 

, where  is the maximum number of steps that  takes 
on any input of length .

n

M
M

f : ℕ → ℕ f(n) M
n



Asymptotic Analysis
• As covered in CSCI 256, we don't care about time complexity on 

small inputs but rather how it grows as  becomes large

• Review asymptotic notation to do this:  Big O, Little O 


Definition. We say that  if positive integers  and  
exist such that for every : 
              

Definition.  We say  if 

n

f(n) = O(g(n)) c n0
n ≥ n0

f(n) ≤ c ⋅ g(n)

f(n) = o(g(n)) lim
n→∞

f(n)
g(n)

= 0



Exercise:  True or False?
1.

2.

3.

4.

5.

6.

8n + 5 = O(n)

1000n + n = o(n)

n n = O(n2)

n = o(n)

log2 n = o(ln n)

n log log n = o(n log n)



Time Complexity Class
Definition. Let  be a function. The time complexity class, 

 , is


         

t : ℕ → ℕ
TIME(t(n))

TIME(t(n)) = {L | L is decided by a TM in O(t(n)) steps}



Time Complexity Example
Consider a TM  for for the language :


"On input string , 


1. Scan across the tape and reject if a 0 is found to the right of a 1.


2. Repeat the following if both 0s and 1s remain.


1. Scan across tape, crossing off a single 0 and a single 1.


3. If either 0 or 1 remains, reject. Otherwise, accept.”


• Time complexity?


• Can we do better?  

M A = {0n1n | n ≥ 0}

M = w



Fun Fact
• Let .   TIME( ) contains only regular languages!f(n) = o(n log n) f(n)



Two Tapes Can be More Efficient
• How quickly can we decide the language  on a 

two tape TM?


• Can do this in  time


• Takeaway:  Different models of computation can yield different 
running times for the same language!


• Let's revisit multi-tape TM to single tape reduction with the lens of 
complexity theory

A = {0n1n | n ≥ 0}

O(n)



Multitape TM to Single Tape TM
• Theorem.  Every -time multi-tape TM has an equivalent 

-time single-tape TM, where .
t(n)

O(t2(n)) t(n) ≥ n

• Takeaway:  Both models are polynomially-equivalent.



• Definition.  Let  be a non-deterministic TM that halts on all inputs.  
The running time or time complexity of  is the function , 
where  is the maximum number of steps that  takes on any 
branch of its computation on any input of length .

M
M f : ℕ → ℕ

f(n) M
n

How About Non-Determinism?



• Theorem.  Every -time non-deterministic TM has an equivalent 
-time deterministic TM, where .

t(n)
2O(t(n)) t(n) ≥ n

How About Non-Determinism?

• Takeaway:  NTM is not polynomially-equivalent to a DTM.



Complexity Class P

Definition.   is the class of languages that are decidable in polynomial 
time on a single-tape Turing machine.  That is,


 

           

P

P = ∪k TIME(nk)



Extended Church Turing Thesis 

Everyone's intuitive notion of 
efficient algorithms  

= polynomial-time algorithms

• Much more controversial: 


• Is  efficient? 


• Randomized algorithms/ quantum algorithms can do much better

O(n10)



Extended Church Turing Thesis 

Everyone's intuitive notion of 
efficient algorithms  

= polynomial-time algorithms



• Definition.  Let  be a function. The time complexity class, 
 , is


         

t : ℕ → ℕ
NTIME(t(n))

NTIME(t(n)) = {L | L is decided by an NTM in O(t(n)) steps}

Towards NP



Complexity Class NP

Definition.   is the class of languages that are decidable in 
polynomial time on non-deterministic Turing machine.  That is,


 

           

NP

NP = ∪k NTIME(nk)


