
CSCI 361 Lecture 17:
Undecidability Wrap Up &
Intro to Complexity Theory

Shikha Singh

Announcements & Logistics
• Pick up reading assignment # 12

• HW 5 graded feedback returned

• HW 6 deadline extended to tonight at 10 pm

• Examples in textbook and slides: how to describe TM's

• Provide the input, step-by-step algorithm, and final output (accept/
reject)

• Argue why your reductions are correct: if and only if statement

• HW 7 will be posted today and due next Wed

• Second to last homework

Looking Ahead
• 5 more lectures left before Thanksgiving break

• 2 more assignments (HW 7 and 8)

• Survey paper logistics

• Investigate an advanced topic of your interest related to ToC

• Encouraged to work in pairs but don't have to

• Will post examples of topics and resources next week

• Google form choosing partner and tentative topic: Nov 20

• 1 page draft of background due Nov 26

• Class presentation: Dec 5 and short paper (3 pages) due Dec 6

Last Time
• Described the computation-history-method to prove undecidability

• Proved that and PCP are undecidable by encoding
computation histories

ALLCFG

Today
• Wrap up computability theory

• Start complexity theory

• In the coming weeks:

• Classes P, NP, EXP

• P vs NP

• NP hardness and NP Completeness

Post Correspondence Problem
• An instance of the Post correspondence problem (PCP) is two

sequences and of strings
where

• Problem. Does there exist a finite sequence where each
 is an index from such that

• Alternate Formulation: An input is a collection of dominos each

containing two strings and the goal is to find

a sequence of these dominoes (repetitions are allowed) such that the
string formed by concatenating the top is the same as the string
formed by concatenating the bottom

A = (a1, a2, …, am) B = (b1, b2, …, bm)
ai, bi ∈ Σ*

i1, i2, …, ik
ij 1,…, m ai1ai2…aik = bi1bi2…bik

[a1

b1], [a2

bb], …, [am

bm]

Post Correspondence Problem
• PCP example: E.g. Consider

• A possible solution

Reductions from PCP
• Theorem. (Last Class) PCP is undecidable.
• HW 7 problem: Reduce PCP to show that

is undecidable.
• Hint: Given PCP instance , create CFLs and as follows:

• What strings do they generate? Can we solve PCP using decider?

∩CFG = {⟨G1, G2⟩ | G1, G2 are CFGs such that L(G1) ∩ L(G2) = ∅}

(A, B) LA LB

A → a1Ai1 | a2Ai2 | ⋯ | amAim
A → a1i1 | a2i2 | ⋯ | amim

B → b1Bi1 | b2Bi2 | ⋯ | bmBim
B → b1i1 | b2i2 | ⋯ | bmim

∩CFG

Undecidability Takeaways
• Almost all properties of regular languages are decidable
• Lots of undecidable problems about CFGs

• Let be CFGs and be a regular expression, then the
following questions are undecidable:
• Is ?
• Is ?
• Is ?
• Is ?

• Deciding any non-trivial property of TM is undecidable
• This is a motivation for studying restricted models of computation

G1, G2 R

L(G1) = L(G2)
L(G1) = L(R)
L(G1) ⊆ L(G2)
L(R) ⊆ L(G1)

Our Picture

All languages

ATM

ATM

• Final Question. Is there a language such that is not Turing
recognizable and is also not Turing recognizable.

• Recall. If and is not Turing recognizable, then is not
Turing recognizable.

L L
L

A ≤m B A B

• Theorem. is neither Turing recognizable nor co-Turing

recognizable (its complement is not Turing recognizable).
• Proof outline.

• To show is not Turing recognizable, need to reduce a
known Turing unrecognizable language to it

• Show that and
• How does this prove the theorem?
• Mapping reductions are closed under complement!

EQTM

EQTM

ATM ≤m EQTM ATM ≤m EQTM

Class Exercise

Completed Picture of Computability

ATMATM

not co-Turing-recognizable
EQTM

All Languages

Complexity Theory

Complexity Theory
• So far, we were focused on computability theory

• What problems can and cannot be solved by various models of a

computer (starting from most restricted to most powerful)

• Now, we want to ask the question:
• What problem can be efficiently solved by a computer?

• CSCI 256 covers all about algorithmic design strategies as well as
analysis tools
• This class: Assume that you know this and won't focus on it

• Instead focus on classifying complexity of CFGs, TMs, etc as well as
reductions to prove problems are NP complete

How to Measure Efficiency
• Time complexity as number of steps
• Complexity measured as a function of input size
• Worst case notion: for any inputs of size

Definition. Let be a deterministic Turing machine that halts on all
inputs. The running time or time complexity of is the function

, where is the maximum number of steps that takes
on any input of length .

n

M
M

f : ℕ → ℕ f(n) M
n

Asymptotic Analysis
• As covered in CSCI 256, we don't care about time complexity on

small inputs but rather how it grows as becomes large
• Review asymptotic notation to do this: Big O, Little O

Definition. We say that if positive integers and
exist such that for every :

Definition. We say if

n

f(n) = O(g(n)) c n0
n ≥ n0

f(n) ≤ c ⋅ g(n)

f(n) = o(g(n)) lim
n→∞

f(n)
g(n)

= 0

Exercise: True or False?
1.

2.

3.

4.

5.

6.

8n + 5 = O(n)

1000n + n = o(n)

n n = O(n2)

n = o(n)

log2 n = o(ln n)

n log log n = o(n log n)

Time Complexity Class
Definition. Let be a function. The time complexity class,

 , is

t : ℕ → ℕ
TIME(t(n))

TIME(t(n)) = {L | L is decided by a TM in O(t(n)) steps}

Time Complexity Example
Consider a TM for for the language :

"On input string ,

1. Scan across the tape and reject if a 0 is found to the right of a 1.

2. Repeat the following if both 0s and 1s remain.

1. Scan across tape, crossing off a single 0 and a single 1.

3. If either 0 or 1 remains, reject. Otherwise, accept.”

• Time complexity?

• Can we do better?

M A = {0n1n | n ≥ 0}

M = w

Fun Fact
• Let . TIME() contains only regular languages!f(n) = o(n log n) f(n)

Two Tapes Can be More Efficient
• How quickly can we decide the language on a

two tape TM?

• Can do this in time

• Takeaway: Different models of computation can yield different
running times for the same language!

• Let's revisit multi-tape TM to single tape reduction with the lens of
complexity theory

A = {0n1n | n ≥ 0}

O(n)

Multitape TM to Single Tape TM
• Theorem. Every -time multi-tape TM has an equivalent

-time single-tape TM, where .
t(n)

O(t2(n)) t(n) ≥ n

• Takeaway: Both models are polynomially-equivalent.

• Definition. Let be a non-deterministic TM that halts on all inputs.
The running time or time complexity of is the function ,
where is the maximum number of steps that takes on any
branch of its computation on any input of length .

M
M f : ℕ → ℕ

f(n) M
n

How About Non-Determinism?

• Theorem. Every -time non-deterministic TM has an equivalent
-time deterministic TM, where .

t(n)
2O(t(n)) t(n) ≥ n

How About Non-Determinism?

• Takeaway: NTM is not polynomially-equivalent to a DTM.

Complexity Class P

Definition. is the class of languages that are decidable in polynomial
time on a single-tape Turing machine. That is,

P

P = ∪k TIME(nk)

Extended Church Turing Thesis

Everyone's intuitive notion of
efficient algorithms

= polynomial-time algorithms

• Much more controversial:

• Is efficient?

• Randomized algorithms/ quantum algorithms can do much better

O(n10)

Extended Church Turing Thesis

Everyone's intuitive notion of
efficient algorithms

= polynomial-time algorithms

• Definition. Let be a function. The time complexity class,
 , is

t : ℕ → ℕ
NTIME(t(n))

NTIME(t(n)) = {L | L is decided by an NTM in O(t(n)) steps}

Towards NP

Complexity Class NP

Definition. is the class of languages that are decidable in
polynomial time on non-deterministic Turing machine. That is,

NP

NP = ∪k NTIME(nk)

