CSCI 361 Lecture 17: Undecidability Wrap Up & Intro to Complexity Theory

Shikha Singh

Announcements & Logistics

- Pick up **reading assignment # 12**
- HW 5 graded feedback returned
- HW 6 deadline extended to tonight at 10 pm
 - Examples in textbook and slides: how to describe TM's
 - Provide the **input**, step-by-step algorithm, and final output (accept/ reject)
 - Argue why your reductions are correct: **if and only if** statement
- **HW 7** will be posted today and due next Wed
 - Second to last homework

Looking Ahead

- 5 more lectures left before Thanksgiving break
- 2 more assignments (HW 7 and 8)
- Survey paper logistics
 - Investigate an advanced topic of your interest related to ToC
 - Encouraged to work in pairs but don't have to
 - Will post examples of topics and resources next week
- Google form choosing partner and tentative topic: **Nov 20**
- I page draft of background due Nov 26
- Class presentation: Dec 5 and short paper (3 pages) due **Dec 6**

LastTime

- Described the computation-history-method to prove undecidability
- Proved that ALL_{CFG} and PCP are undecidable by encoding computation histories

Today

- Wrap up **computability theory**
- Start complexity theory
- In the coming weeks:
 - Classes P, NP, EXP
 - P vs NP
 - NP hardness and NP Completeness

Post Correspondence Problem

- An instance of the Post correspondence problem (PCP) is two sequences $A = (a_1, a_2, ..., a_m)$ and $B = (b_1, b_2, ..., b_m)$ of strings where $a_i, b_i \in \Sigma^*$
- **Problem.** Does there exist a finite sequence $i_1, i_2, ..., i_k$ where each i_j is an index from 1, ..., m such that $a_{i_1}a_{i_2}...a_{i_k} = b_{i_1}b_{i_2}...b_{i_k}$
- Alternate Formulation: An input is a collection of dominos each containing two strings $\left[\frac{a_1}{b_1}\right], \left[\frac{a_2}{b_b}\right], \dots, \left[\frac{a_m}{b_m}\right]$ and the goal is to find

a sequence of these dominoes (*repetitions are allowed*) such that the string formed by concatenating the top is the same as the string formed by concatenating the bottom

Post Correspondence Problem

• PCP example: E.g. Consider

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{ca}{c}\right] \right\}.$$

$$\begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$$

• A possible solution

Reductions from PCP

- Theorem. (Last Class) PCP is undecidable.
- **HW 7 problem:** Reduce PCP to show that

 $\cap_{\mathsf{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs such that } L(G_1) \cap L(G_2) = \emptyset \}$ is undecidable.

• Hint: Given PCP instance (A, B), create CFLs L_A and L_B as follows:

 $A \rightarrow a_1 A i_1 \mid a_2 A i_2 \mid \cdots \mid a_m A i_m$ $A \rightarrow a_1 i_1 \mid a_2 i_2 \mid \cdots \mid a_m i_m$

 $B \rightarrow b_1 B i_1 \mid b_2 B i_2 \mid \cdots \mid b_m B i_m$ $B \rightarrow b_1 i_1 \mid b_2 i_2 \mid \cdots \mid b_m i_m$

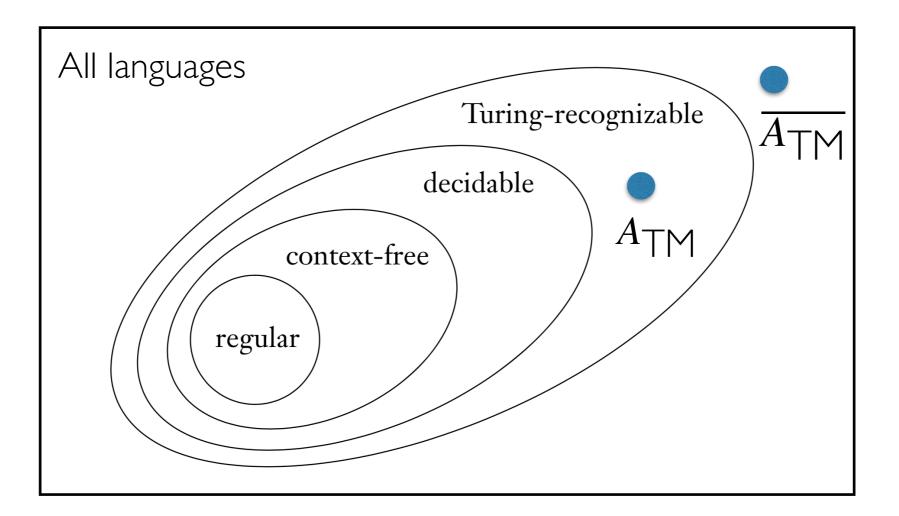
• What strings do they generate? Can we solve PCP using \cap_{CFG} decider?

Undecidability Takeaways

- Almost all properties of regular languages are decidable
- Lots of undecidable problems about CFGs
 - Let G_1, G_2 be CFGs and R be a regular expression, then the following questions are undecidable:
 - $ls L(G_1) = L(G_2)$?
 - $|| | | | L(G_1) = L(R) | ?$
 - Is $L(G_1) \subseteq L(G_2)$?
 - Is $L(R) \subseteq L(G_1)$?
- Deciding any non-trivial property of TM is undecidable
- This is a motivation for studying restricted models of computation

Our Picture

- Final Question. Is there a language L such that L is not Turing recognizable and \overline{L} is also not Turing recognizable.
- **Recall.** If $A \leq_m B$ and A is not Turing recognizable, then B is not Turing recognizable.

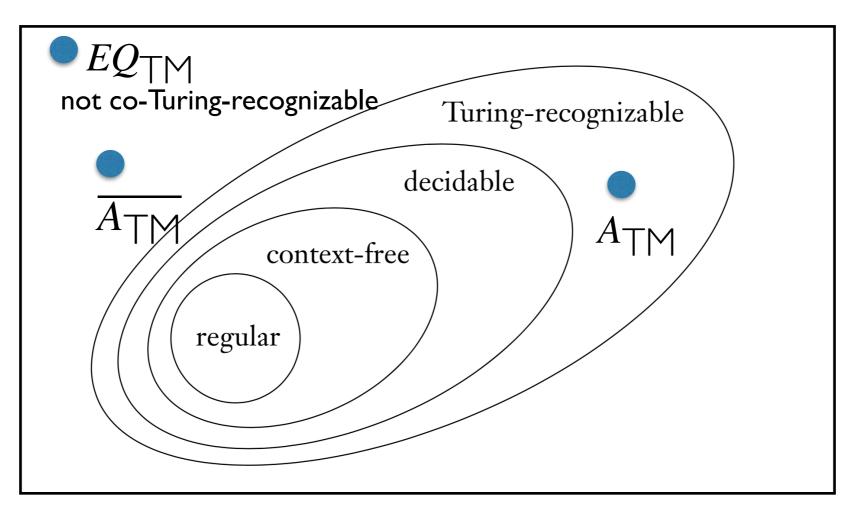


Class Exercise

- **Theorem.** EQ_{TM} is neither Turing recognizable nor co-Turing recognizable (its complement is not Turing recognizable).
- Proof outline.
 - To show EQ_TM is not Turing recognizable, need to reduce a known Turing unrecognizable language to it
 - Show that $A_{TM} \leq_m EQ_{TM}$ and $A_{TM} \leq_m \overline{EQ}_{TM}$
 - How does this prove the theorem?
 - Mapping reductions are closed under complement!

Completed Picture of Computability

All Languages



Complexity Theory

Complexity Theory

- So far, we were focused on computability theory
 - What problems can and cannot be solved by various models of a computer (starting from most restricted to most powerful)
- Now, we want to ask the question:
 - What problem can be efficiently solved by a computer?
- CSCI 256 covers all about *algorithmic design strategies* as well as analysis tools
 - This class: Assume that you know this and won't focus on it
- Instead focus on classifying complexity of CFGs,TMs, etc as well as reductions to prove problems are NP complete

How to Measure Efficiency

- Time complexity as number of steps
- Complexity measured as a function of input size
- Worst case notion: for any inputs of size n

Definition. Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M takes on any input of length n.

Asymptotic Analysis

- As covered in CSCI 256, we don't care about time complexity on small inputs but rather how it grows as *n* becomes large
- Review asymptotic notation to do this: Big O, Little O

Definition. We say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every $n \ge n_0$: $f(n) \le c \cdot g(n)$

Definition. We say
$$f(n) = o(g(n))$$
 if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Exercise: True or False?

- |. 8n + 5 = O(n)
- 2. $1000n + \sqrt{n} = o(n)$
- 3. $n\sqrt{n} = O(n^2)$
- 4. $\sqrt{n} = o(n)$
- 5. $\log_2 n = o(\ln n)$
- 6. $n \log \log n = o(n \log n)$

Time Complexity Class

Definition. Let $t : \mathbb{N} \to \mathbb{N}$ be a function. The time complexity class, TIME(t(n)), is

 $TIME(t(n)) = \{L \mid L \text{ is decided by a TM in } O(t(n)) \text{ steps} \}$

Time Complexity Example

Consider a TM M for for the language $A = \{0^n 1^n \mid n \ge 0\}$:

- M = "On input string w,
 - I. Scan across the tape and reject if a 0 is found to the right of a 1.
 - 2. Repeat the following if both 0s and 1s remain.
 - I. Scan across tape, crossing off a single 0 and a single 1.
 - 3. If either 0 or 1 remains, reject. Otherwise, accept."
- Time complexity?
- Can we do better?

Fun Fact

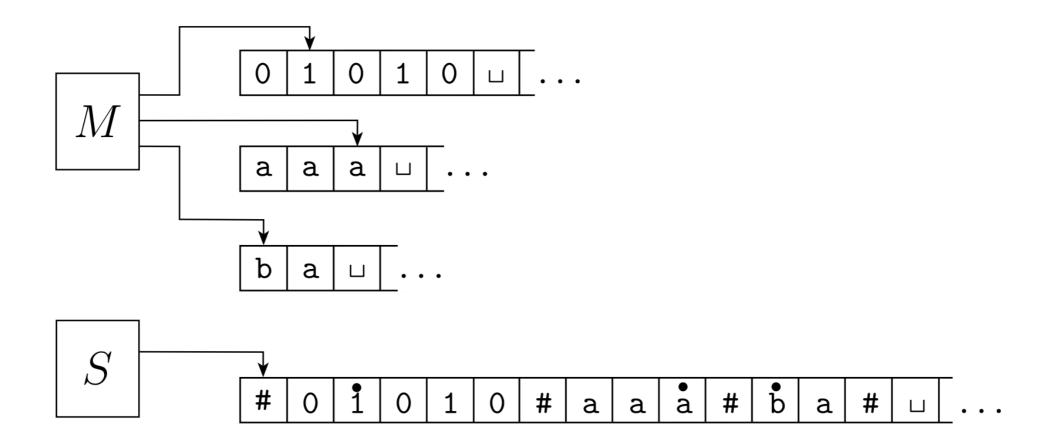
• Let $f(n) = o(n \log n)$. TIME(f(n)) contains only regular languages!

Two Tapes Can be More Efficient

- How quickly can we decide the language $A = \{0^n 1^n \mid n \ge 0\}$ on a two tape TM?
 - Can do this in O(n) time
- **Takeaway:** Different models of computation can yield different running times for the same language!
- Let's revisit multi-tape TM to single tape reduction with the lens of complexity theory

Multitape TM to Single Tape TM

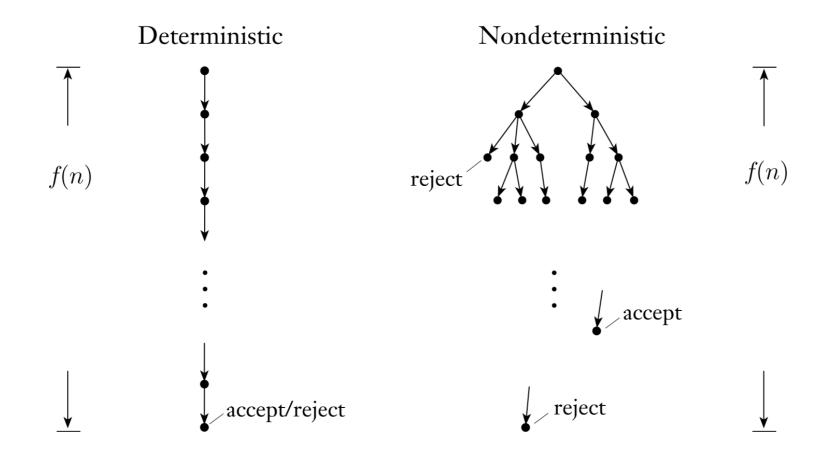
• **Theorem.** Every t(n)-time multi-tape TM has an equivalent $O(t^2(n))$ -time single-tape TM, where $t(n) \ge n$.



• **Takeaway:** Both models are polynomially-equivalent.

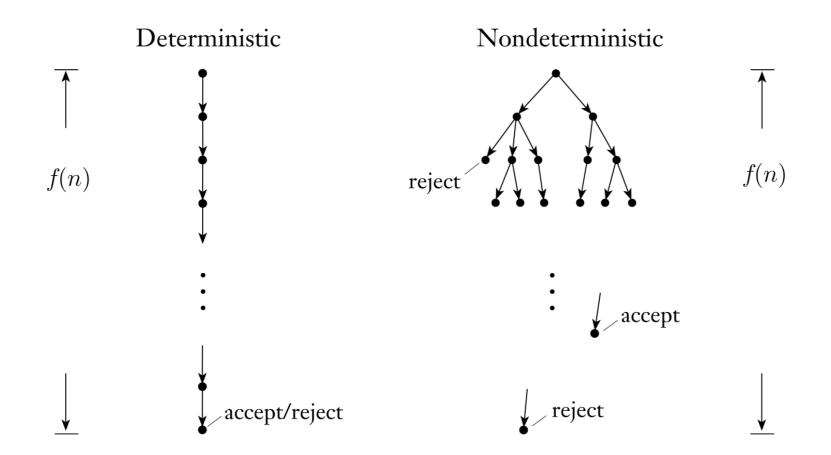
How About Non-Determinism?

• **Definition.** Let M be a non-deterministic TM that halts on all inputs. The running time or time complexity of M is the function $f : \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M takes on any branch of its computation on any input of length n.



How About Non-Determinism?

• Theorem. Every t(n)-time non-deterministic TM has an equivalent $2^{O(t(n))}$ -time deterministic TM, where $t(n) \ge n$.



• **Takeaway:** NTM is not polynomially-equivalent to a DTM.

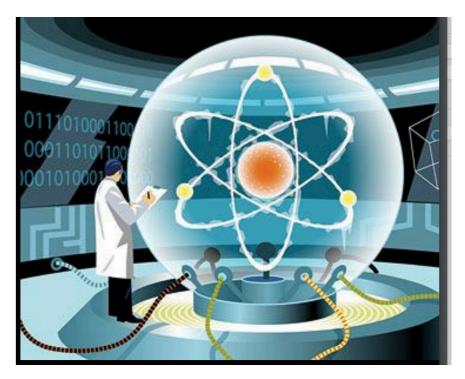
Complexity Class P

Definition. P is the class of languages that are decidable in polynomial time on a single-tape Turing machine. That is,

$$\mathsf{P} = \mathsf{U}_k \mathsf{TIME}(n^k)$$

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms = polynomial-time algorithms



- Much more controversial:
 - Is $O(n^{10})$ efficient?
 - Randomized algorithms/ quantum algorithms can do much better

Extended Church Turing Thesis

Everyone's intuitive notion of efficient algorithms

= polynomial-time algorithms

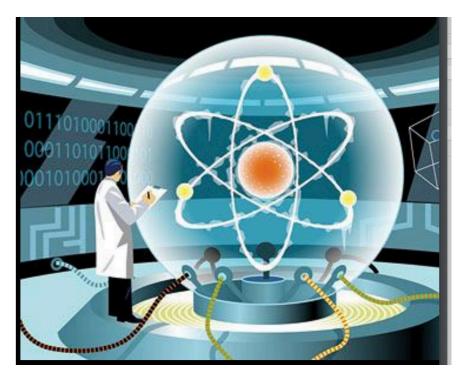
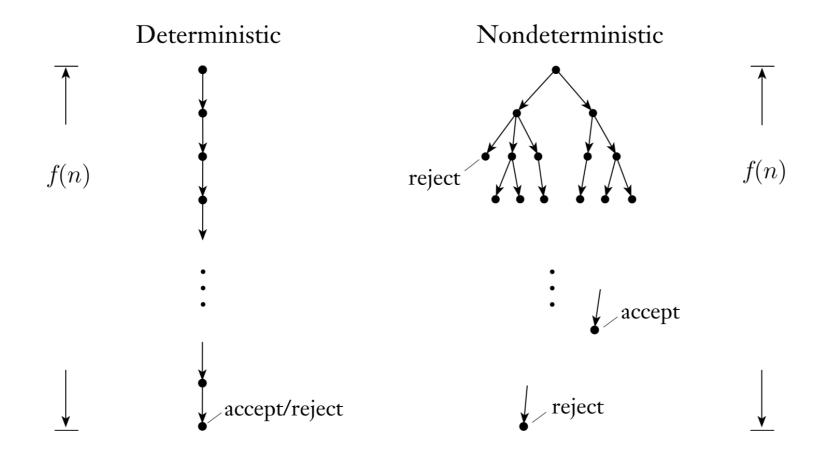


	Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second In cases where the running time exceeds 10 ²⁵ years, we simply record the algorithm at taking a very long time.						
	п	$n \log_2 n$	<i>n</i> ²	n ³	1.5 ⁿ	2 ^{<i>n</i>}	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>n</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Towards NP

• **Definition.** Let $t : \mathbb{N} \to \mathbb{N}$ be a function. The time complexity class, NTIME(t(n)), is

 $NTIME(t(n)) = \{L \mid L \text{ is decided by an NTM in } O(t(n)) \text{ steps} \}$



Complexity Class NP

Definition. NP is the class of languages that are decidable in polynomial time on non-deterministic Turing machine. That is,

 $NP = U_k NTIME(n^k)$