CSCl 361 Lecture |6:

Reductions Using Computation Histories

Shikha Singh



Announcements & Logistics

Hand in reading assignment # | |
No reading assighment today
HW 6 due tomorrow at 10 pm

Office hours today and tomorrow 2.30-4 pm



L ast [ Ime

Practice with reductions to prove a bunch of languages are
undecidable

Introduced mapping reducibility

Helps to reason about Turing (un)/recognizable languages



loday

Rice Theorem

Using computational histories method to prove undecidability



Rice's Theorem

Any nontrivial property of the languages recognized by Turing
machines Is undecidable.
* s the language empty? |s it finite! s it infinite! Is it regular?

» Does the language contain strings in X*

s the language the same as the language of another TM?

We proved many such examples in class.

HW 6 will have more practice with these.



Rice's Theorem

Any nontrivial property of the languages recognized by Turing
machines Is undecidable.
* s the language empty? |s it finite! s it infinite! Is it regular?

Does the language contain strings in X%

s the language the same as the language of another TM?

In contrast, questions about the T™M's structure are decidable

Has more than |5 states, has no transitions Into Its reject state, etc



Decidable or Not

Questions about behavior of TM's computation on inputs may or may
not be decidable.

(HW 6 Problem): One of these Is decidable, one Is not:

+ Doesagven M M and input w, does it ever move Its head left
when running on w¢

+ Does a given TM M and input w, does It ever move Its head three

times In a row when running on w!



Undecidable Languages about CFGs

The following languages about CFGs are all undecidable:

+ (All) Given a CFG G, is L(G) = X%

- (EQ) Given two CFGs Gy, Gy, is L(Gy) = L(G,)!

» (Disjoint) Given two CFGs Gy, Gy, is L(G; N G,) = &

* (Ambiguity) Given a CFG G, is it ambiguous!

» (Disjoint Regular) Given two CFGs Gy, G,, is L(G; N G,) a regular
language!

* .. ElC

- o prove that these are undecidable, we need a way to encode the

computation history of a Turing into "grammar” form



Recall: TM Configurations

» A configuration C yields a configuration C, if the TM can legally go

from C; to G, using its transition functiono

» Consider symbols a, b, c € I" and strings u,v € I'* then
ua q; bv yields u g; acv if o(q;, b) = (g;, ¢, L), and

ua q; bv yields uac g; v if o(g;, b) = (g;, ¢, R)

: |




Computation Historles

» Consider a deterministic M M and an input string w

« M's computation on w can:
- Halt and accept
- Halt and reject

» Or never halt (loop forever)
- For the first two cases, M's computation history on w is a finite sequence
Ci,C,,...,C,where

+ () is the start configuration

» C,yelds C foreach 1 <i <7 -1

+ C,Is an accept or reject configuration

» |t M does not halt on w, no computation history exists



AU—CFG 'S undecidable

* Theorem. The language

ALLcrc = {(G) | Gis a CFG and L(G) = Z£*} is undecidable.

* Proof Idea.

+ Show ATM <, ALLCFG
- Given (M, w), create a CFG G such that

(M,w) € ATp if and only if L(G) = X* , equivalently

M does not accept w if and only if L(G) = X*



AU—CFG 'S undecidable

* Theorem. The language

ALLcrc = {(G) | Gis a CFG and L(G) = Z£*} is undecidable.

* Proof Idea.

« Given M and w, construct a grammar that generates all strings

except the accepting computation history of M on w
» |f M does not accept w, then L(G) = X*
« Otherwise, L(G) # X*



AU—CFG 'S undecidable

* Theorem. The language

ALLcrc = {(G) | Gis a CFG and L(G) = Z£*} is undecidable.

Proof Idea.

» Suppose the computation history of M on w is #C#C#.. . #(C,
then 1t Is not an accepting history If any of these conditions hold:
+ (, is not the start configuration
« some C; does not yield C,

+ (C,is not an accepting configuration

» Create a PDA D that accepts if one of these conditions are true



AU—CFG 'S undecidable

* Theorem. The language

ALLcrc = {(G) | Gis a CFG and L(G) = Z£*} is undecidable.

Proof Idea.

« PDA D non-deterministically guesses which of the three
conditions are true

» To check if some C; does not yield C,, ;, consider a different way

to encode accepting configurations



Post Correspondence Problem

 Simple problem about strings, defined by Emil Post (1946)

+ Let 2 be any alphabet with at least two letters

 An Instance of the Post correspondence problem (PCP) is given by a
two sequences A = (a;,a, ...,a,,) and B = (b, b,, ..., b,,) where
a,b, € 2*

- Problem. Does there exist a finite sequence iy, I,, ..., I; where

each ij is an index from 1,..., m such that

Clilaiz. . .Cll-k — bilbiz. . .blk



+ E.g. Consider

Post Correspondence Problem

- Alternate Formulation: An input is a collection of dominos with

e

byl | by

two sides: each containing two strings

+ Problem is to find a sequence of these dominoes (repetitions are
allowed) such that the string formed by concatenating the top Is the

same as the string formed by concatenating the bottom

e &) [ )



Post Correspondence Problem

&) 5] 2T

+ E.g. Consider

A possible solution

a&caa%c
a blc alala blc




Post Correspondence Problem

) 5 50

- E.g. Consider

+ No possible solution, why?

- Given a general Instance, the PCP problem is to determine if it has a

solution.

« Theorem. PCP is undecidable.



PCP 1s Undecidable

* Reduce A1Mm to PCP:  Given (M, w), create an instance of PCP such

that it has a solution iff M accepts w

* Key idea: create dominoes such that a match between top and bottom

strings forces M's simulation on w

» Technicalities (ignore for now):

- Assume M never moves its head off the left-hand end of the tape

« [fw = g assume w = LI In the construction

. Modity PCP to require starting with the first domino | —

« (Can remove these restrictions at the end



PCP 1s Undecidable

#
. Part l. Let the first domino be [ ]
#W1W2. . Wn#

a
Part 2. For each transition of the type d(q, a) = (r, b, R), create a domino [Z_]
r

Part 3. For each transition of the type 6(q, a) = (r, b, L) create a domino

——| foreveryc €1’
rchb

Part 4. To "copy over" symbols that are not adjacent to head position on erther

a
side, create domino [—] foreacha el
a

# #
. Part 5. To match the # symbols in the middle and at end adc [E] e [ L #]



« Part 2 adds the domino

Construction Example

» Consider an M that starts in gg on input 0100 and
q00100 yields 2g,100 by following 6(g,,0) = (¢7,2,R)

+2001007
« Part | adds the first domino [#QOO]-OO#

]
2q7

# g0 0O 1 0 O #12 ¢q;11]01]0|#

+ Using Part 5 can force the match:



Construction Example

» Recall that g40100 yields 2¢,100
» Now suppose 0(g7,1) = (¢5,0,R)

~ Thatis, 2g,100 yields 20¢500, then we add the domino | ——

» Thus, the partial match looks like this:

\




Construction Example

+ Finally, to handle the last transition that includes a gaccept add

4 qaccept Yaccepta

and foreacha € I’

- daccept - Jaccept

Suppose the last configuration of M is

# 2 1 q;lccept O 2 #

Then to allow the top to catch up we need these extra dominoes



Construction Example

» Suppose the last configuration of M is

# 2 1 chcept O 2 #

Then to allow the top to catch up we need these extra dominoes

# 2 1 Qaccepto 2 #1211 (accept 2081 - # Qaccept | #



Construction Example

. Finally, for the last step to match the extra Qaccept# at the bottom

| 9accept##
add the domino

#

# 2 1 Qaccepto 2 #1211 (accept 2081 - # Qaccept#



PCP Undecidable Proof

- Jo complete the proof, some details remain

« (Can reduce "modified PCP" to PCP

« Consider an instance of the modified PCP:

(2] 2] 2] (2]}

« (Create an instance of PCP:

sl G5 B Gl [55) [

— ¥g kg ok, — Ty Foeeeyy, F
where x u = *u; * u, U, Uk = U™ Uy w, ™ and

— kg kg L. kg X
* U Kx =" Ut u, U,



PCP to CFL Reductions

+ Using PCE  we can show a bunch of questions about CFGs are

undecidable:
* (Ambiguity) Given a CFG G, is it ambiguous!
» (Disjoint) Given two CFGs Gy, G, is L(G; N G,) = &
» (Disjoint Regular) Given two CFGs Gy, Gy, is L(G; N G,) a
regular language!?

¢ .. etc.



