
CSCI 361 Lecture 16:
Reductions Using Computation Histories

Shikha Singh

Announcements & Logistics
• Hand in reading assignment # 11

• No reading assignment today

• HW 6 due tomorrow at 10 pm

• Office hours today and tomorrow 2.30-4 pm

Last Time
• Practice with reductions to prove a bunch of languages are

undecidable

• Introduced mapping reducibility

• Helps to reason about Turing (un)/recognizable languages

Today
• Rice Theorem

• Using computational histories method to prove undecidability

Rice's Theorem
Any nontrivial property of the languages recognized by Turing
machines is undecidable.

• Is the language empty? Is it finite? Is it infinite? Is it regular?
• Does the language contain strings in
• Is the language the same as the language of another TM?

We proved many such examples in class.
HW 6 will have more practice with these.

Σ*

Rice's Theorem
Any nontrivial property of the languages recognized by Turing
machines is undecidable.

• Is the language empty? Is it finite? Is it infinite? Is it regular?
• Does the language contain strings in
• Is the language the same as the language of another TM?

In contrast, questions about the TM's structure are decidable
• Has more than 15 states, has no transitions into its reject state, etc

Σ*

Decidable or Not
Questions about behavior of TM's computation on inputs may or may
not be decidable.

(HW 6 Problem): One of these is decidable, one is not:
• Does a given TM and input , does it ever move its head left

when running on ?
• Does a given TM and input , does it ever move its head three

times in a row when running on ?

M w
w
M w

w

Undecidable Languages about CFGs
The following languages about CFGs are all undecidable:
• (All) Given a CFG , is ?

• (EQ) Given two CFGs , is ?

• (Disjoint) Given two CFGs , is ?

• (Ambiguity) Given a CFG , is it ambiguous?

• (Disjoint Regular) Given two CFGs , is a regular

language?
• etc
• To prove that these are undecidable, we need a way to encode the

computation history of a Turing into "grammar" form

G L(G) = Σ*

G1, G2 L(G1) = L(G2)

G1, G2 L(G1 ∩ G2) = ∅

G

G1, G2 L(G1 ∩ G2)

Recall: TM Configurations
• A configuration yields a configuration if the TM can legally go

from to using its transition function

• Consider symbols and strings then

 if , and

 if

C1 C2
C1 C2 δ

a, b, c ∈ Γ u, v ∈ Γ*

ua qi bv yields u qj acv δ(qi, b) = (qj, c, L)

ua qi bv yields uac qj v δ(qi, b) = (qj, c, R)

Computation Histories
• Consider a deterministic TM and an input string

• 's computation on can:
• Halt and accept
• Halt and reject
• Or never halt (loop forever)

• For the first two cases, 's computation history on is a finite sequence

 where

• is the start configuration

• yields for each

• is an accept or reject configuration

• If does not halt on , no computation history exists

M w

M w

M w

C1, C2, …, Cℓ

C1

Ci Ci+1 1 ≤ i ≤ ℓ − 1

Cℓ

M w

 is undecidableALLCFG
• Theorem. The language

 is undecidable.

• Proof Idea.

• Show

• Given , create a CFG such that

 if and only if , equivalently

 does not accept if and only if

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

ATM ≤m ALLCFG
⟨M, w⟩ G

⟨M, w⟩ ∈ ATM L(G) = Σ*

M w L(G) = Σ*

 is undecidableALLCFG
• Theorem. The language

 is undecidable.

• Proof Idea.

• Given and , construct a grammar that generates all strings

except the accepting computation history of on

• If does not accept , then

• Otherwise,

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

M w

M w

M w L(G) = Σ*

L(G) ≠ Σ*

 is undecidableALLCFG
• Theorem. The language

 is undecidable.

• Proof Idea.

• Suppose the computation history of on is

then it is not an accepting history if any of these conditions hold:
• is not the start configuration

• some does not yield

• is not an accepting configuration

• Create a PDA that accepts if one of these conditions are true

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

M w #C1#C2#…#Cℓ

C1

Ci Ci+1

Cℓ

D

 is undecidableALLCFG
• Theorem. The language

 is undecidable.

• Proof Idea.

• PDA non-deterministically guesses which of the three

conditions are true

• To check if some does not yield , consider a different way

to encode accepting configurations

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

D

Ci Ci+1

Post Correspondence Problem
• Simple problem about strings, defined by Emil Post (1946)
• Let be any alphabet with at least two letters
• An instance of the Post correspondence problem (PCP) is given by a

two sequences and where

• Problem. Does there exist a finite sequence where

each is an index from such that

Σ

A = (a1, a2, …, am) B = (b1, b2, …, bm)

ai, bi ∈ Σ*

i1, i2, …, ik
ij 1,…, m

ai1ai2…aik = bi1bi2…bik

Post Correspondence Problem
• Alternate Formulation: An input is a collection of dominos with

two sides: each containing two strings

• Problem is to find a sequence of these dominoes (repetitions are

allowed) such that the string formed by concatenating the top is the

same as the string formed by concatenating the bottom

• E.g. Consider

[a1

b1], [a2

bb], …, [am

bm]

Post Correspondence Problem

• E.g. Consider

• A possible solution

Post Correspondence Problem

• E.g. Consider

• No possible solution, why?

• Given a general instance, the PCP problem is to determine if it has a

solution.
• Theorem. PCP is undecidable.

PCP is Undecidable
• Reduce to PCP: Given , create an instance of PCP such

that it has a solution iff accepts
• Key idea: create dominoes such that a match between top and bottom

strings forces 's simulation on
• Technicalities (ignore for now):

• Assume never moves its head off the left-hand end of the tape
• If , assume in the construction

• Modify PCP to require starting with the first domino

• Can remove these restrictions at the end
•

ATM ⟨M, w⟩

M w

M w

M

w = ε w = ⊔

[t1
b1]

PCP is Undecidable

• Part 1. Let the first domino be

• Part 2. For each transition of the type , create a domino

• Part 3. For each transition of the type create a domino

 for every

• Part 4. To "copy over" symbols that are not adjacent to head position on either

side, create domino for each

• Part 5. To match the symbols in the middle and at end add and

[#
#w1w2…wn#]

δ(q, a) = (r, b, R) [qa
br]

δ(q, a) = (r, b, L)

[cqa
rcb] c ∈ Γ

[a
a] a ∈ Γ

[
] [

⊔ #]

Construction Example
• Consider an that starts in on input and

 yields by following

• Part 1 adds the first domino

• Part 2 adds the domino

• Using Part 5 can force the match:

M q0 0100

q00100 2q7100 δ(q0,0) = (q7,2,R)

Construction Example
• Recall that yields

• Now suppose

• That is, yields , then we add the domino

• Thus, the partial match looks like this:

q00100 2q7100

δ(q7,1) = (q5,0,R)

2q7100 20q500 [q71
0q5]

Construction Example
• Finally, to handle the last transition that includes a add

 and for each

Suppose the last configuration of is

Then to allow the top to catch up we need these extra dominoes

qaccept

[
a qaccept
qaccept] [

qaccepta

qaccept] a ∈ Γ

M

Construction Example
• Suppose the last configuration of is

Then to allow the top to catch up we need these extra dominoes

M

Construction Example
• Finally, for the last step to match the extra at the bottom

add the domino

qaccept#

[
qaccept##

]

PCP Undecidable Proof
• To complete the proof, some details remain

• Can reduce "modified PCP" to PCP
• Consider an instance of the modified PCP:

• Create an instance of PCP:

where , and ⋆ u = * u1 * u2 * ⋯uk u ⋆ = u1 * u2 * ⋯uk *

⋆ u ⋆ = * u1 * u2⋯ * uk *

PCP to CFL Reductions
• Using PCP, we can show a bunch of questions about CFGs are

undecidable:
• (Ambiguity) Given a CFG , is it ambiguous?

• (Disjoint) Given two CFGs , is ?

• (Disjoint Regular) Given two CFGs , is a

regular language?
• ... etc.

G

G1, G2 L(G1 ∩ G2) = ∅

G1, G2 L(G1 ∩ G2)

