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Announcements & Logistics
• Hand in reading assignment # 11 

• No reading assignment today

• HW 6 due tomorrow at 10 pm

• Office hours today and tomorrow 2.30-4 pm



Last Time
• Practice with reductions to prove a bunch of languages are 

undecidable

• Introduced mapping reducibility

• Helps to reason about Turing (un)/recognizable languages



Today
• Rice Theorem

• Using computational histories method to prove undecidability



Rice's Theorem
Any nontrivial property of the languages recognized by Turing 
machines is undecidable.

• Is the language empty?  Is it finite?  Is it infinite? Is it regular?
• Does the language contain strings in 
• Is the language the same as the language of another TM?

We proved many such examples in class.
HW 6 will have more practice with these.
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Rice's Theorem
Any nontrivial property of the languages recognized by Turing 
machines is undecidable.

• Is the language empty?  Is it finite?  Is it infinite? Is it regular?
• Does the language contain strings in 
• Is the language the same as the language of another TM?

In contrast, questions about the TM's structure are decidable
• Has more than 15 states, has no transitions into its reject state, etc

Σ*



Decidable or Not
Questions about behavior of  TM's computation on inputs may or may 
not be decidable.
 
(HW 6 Problem): One of these is decidable, one is not:
• Does a given TM   and input , does it ever move its head left 

when running on ?
• Does a given TM  and input , does it ever move its head three 

times in a row when running on ?
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Undecidable Languages about CFGs
The following languages about CFGs are all undecidable:
• (All) Given a CFG , is ?           

• (EQ) Given two CFGs , is ?

• (Disjoint) Given two CFGs , is ?

• (Ambiguity)  Given a CFG , is it ambiguous?

• (Disjoint Regular) Given two CFGs , is  a regular 

language?
• .... etc
• To prove that these are undecidable, we need a way to encode the 

computation history of a Turing into "grammar" form

G L(G) = Σ*

G1, G2 L(G1) = L(G2)

G1, G2 L(G1 ∩ G2) = ∅

G

G1, G2 L(G1 ∩ G2)



Recall:  TM Configurations
• A configuration  yields a configuration  if the TM can legally go 

from  to  using its transition function

• Consider symbols  and strings  then 
 

    if ,  and 
 

    if  
 

C1 C2
C1 C2 δ

a, b, c ∈ Γ u, v ∈ Γ*

ua qi bv  yields  u qj acv δ(qi, b) = (qj, c, L)

ua qi bv  yields  uac qj v δ(qi, b) = (qj, c, R)



Computation Histories
• Consider a deterministic TM  and an input string 

• 's computation on  can:
• Halt and accept
• Halt and reject
• Or never halt (loop forever)

• For the first two cases, 's computation history on  is a finite sequence 

 where

•  is the start configuration

•  yields for each 

•  is an accept or reject configuration

• If  does not halt on , no computation history exists
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C1, C2, …, Cℓ

C1

Ci Ci+1 1 ≤ i ≤ ℓ − 1

Cℓ

M w



 is undecidableALLCFG
• Theorem.  The language 

 is undecidable.

• Proof Idea.

• Show   

• Given , create a CFG  such that 

 

   if and only if  , equivalently  

 

 does not accept  if and only if    

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

ATM ≤m ALLCFG
⟨M, w⟩ G

⟨M, w⟩ ∈ ATM L(G) = Σ*

M w L(G) = Σ*



 is undecidableALLCFG
• Theorem.  The language 

 is undecidable.

• Proof Idea.

• Given  and , construct a grammar that generates all strings 

except the accepting computation history of  on 

• If  does not accept , then 

• Otherwise, 

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

M w

M w

M w L(G) = Σ*

L(G) ≠ Σ*



 is undecidableALLCFG
• Theorem.  The language 

 is undecidable.

•  Proof Idea.

• Suppose the computation history of  on  is  

then it is not an accepting history if any of these conditions hold:
•  is not the start configuration

• some  does not yield 

•  is not an accepting configuration

• Create a PDA  that accepts if one of these conditions are true

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

M w #C1#C2#…#Cℓ

C1

Ci Ci+1

Cℓ

D



 is undecidableALLCFG
• Theorem.  The language 

 is undecidable.

•  Proof Idea.

• PDA  non-deterministically guesses which of the three 

conditions are true 

• To check if some  does not yield , consider a different way 

to encode accepting configurations 

ALLCFG = {⟨G⟩ | Gis a CFG and L(G) = Σ*}

D

Ci Ci+1



Post Correspondence Problem
• Simple problem about strings, defined by Emil Post (1946)
• Let  be any alphabet with at least two letters
• An instance of the Post correspondence problem (PCP) is given by a 

two sequences  and  where 

• Problem.  Does there exist a finite sequence  where 

each  is an index from  such that  

   

Σ

A = (a1, a2, …, am) B = (b1, b2, …, bm)

ai, bi ∈ Σ*

i1, i2, …, ik
ij 1,…, m

ai1ai2…aik = bi1bi2…bik



Post Correspondence Problem
• Alternate Formulation:  An input is a collection of dominos with 

two sides:  each containing two strings 

• Problem is to find a sequence of these dominoes (repetitions are 

allowed) such that the string formed by concatenating the top is the 

same as the string formed by concatenating the bottom 

• E.g.  Consider 

[ a1

b1 ], [ a2

bb ], …, [ am

bm ]



Post Correspondence Problem

• E.g.  Consider 

• A possible solution 



Post Correspondence Problem

• E.g.  Consider 

• No possible solution, why?

• Given a general instance, the PCP problem is to determine if it has a 

solution.
• Theorem.  PCP is undecidable. 



PCP is Undecidable
• Reduce  to PCP:   Given ,  create an instance of PCP such 

that it has a solution iff  accepts 
• Key idea:   create dominoes such that a match between top and bottom 

strings forces 's simulation on 
• Technicalities (ignore for now): 

• Assume  never moves its head off the left-hand end of the tape 
• If , assume in the construction

• Modify PCP to require starting with the first domino 

• Can remove these restrictions at the end
•

ATM ⟨M, w⟩

M w

M w

M

w = ε w = ⊔

[ t1
b1 ]



PCP is Undecidable

• Part 1.  Let the first domino be 

• Part 2.  For each transition of the type , create a domino 

• Part 3.  For each transition of the type  create a domino 

 for every 

• Part 4.  To "copy over" symbols that are not adjacent to head position on either 

side, create domino  for each 

• Part 5.  To match the  symbols in the middle and at end add  and 

[ #
#w1w2…wn# ]

δ(q, a) = (r, b, R) [ qa
br ]

δ(q, a) = (r, b, L)

[ cqa
rcb ] c ∈ Γ

[ a
a ] a ∈ Γ

# [ #
# ] [ #

⊔ # ]



Construction Example
• Consider an  that starts in  on input  and  

 yields  by following 

• Part 1 adds the first domino 

• Part 2 adds the domino 

• Using Part 5 can force the match:

M q0 0100

q00100 2q7100 δ(q0,0) = (q7,2,R)



Construction Example
• Recall that  yields 

• Now suppose 

• That is,  yields , then we add the domino 

• Thus, the partial match looks like this:

q00100 2q7100

δ(q7,1) = (q5,0,R)

2q7100 20q500 [ q71
0q5 ]



Construction Example
• Finally, to handle the last transition that includes a  add 

 and for each  

Suppose the last configuration of  is 

 

Then to allow the top to catch up we need these extra dominoes

qaccept

[
a qaccept
qaccept ] [

qaccepta

qaccept ] a ∈ Γ

M



Construction Example
• Suppose the last configuration of  is 

 

Then to allow the top to catch up we need these extra dominoes 

M



Construction Example
• Finally, for the last step to match the extra  at the bottom 

add the domino 

qaccept#

[
qaccept##

# ]



PCP Undecidable Proof
• To complete the proof, some details remain 

• Can reduce "modified PCP" to PCP
• Consider an instance of the modified PCP:  

• Create an instance of PCP:  
 
 

where ,   and ⋆ u = * u1 * u2 * ⋯uk u ⋆ = u1 * u2 * ⋯uk *

⋆ u ⋆ = * u1 * u2⋯ * uk *



PCP to CFL Reductions
• Using PCP,   we can show a bunch of questions about CFGs are 

undecidable: 
• (Ambiguity)  Given a CFG , is it ambiguous?

• (Disjoint) Given two CFGs , is ?

• (Disjoint Regular) Given two CFGs , is  a 

regular language?
• ... etc.

G

G1, G2 L(G1 ∩ G2) = ∅

G1, G2 L(G1 ∩ G2)


