
CSCI 361 Lecture 15:  
Reducibility

Shikha Singh

Announcements & Logistics
• Happy Halloween:

• Grab a candy from the candy bowl

• Hand in reading assignment # 10

• Pick up reading assignment # 11

• Due start of class on Tues Nov 5

• HW 6 released, due next Wed Nov 6

• My elective!

Last Time
• Proved some problems are undecidable:

• Given a TM and an input, does it accept it?

•

• Given a TM and an input, does it halt on it (accept/reject it)?

•

• Given a TM, is its language empty?

•

• Introduced Turing reductions

ATM = {⟨M, w⟩ | T is a TM and w ∈ L(M)}

HALTTM = {⟨M, w⟩ | M is a TM and M halts on w}

ETM = {⟨M⟩ | M is a TM and L(M) = ∅}

Today
• Do more practice with reductions to prove undecidability

• Identify many more TM undecidable and TM unrecognizable problems

• Informally, problem reduces to Problem if we can use the
solution of to solve

A B
B A

Reduction Review

Solver for B

Solver for A

Input to A
Reduce

Input to B

Review Reduction: to ATM ETM
Suppose TM decides . Consider the following decider :

• "On input

• Encode a TM that does the following:

• "On input ,

• If , reject.

• If , then run on and accept if does, else reject.

• Run on . If accepts, reject; if rejects, accept.

• Correctness: If is a decider for then a decider for .

R ETM

D = ⟨M, w⟩

Mw

Mw = x

x ≠ w

x = w M w M

R ⟨Mw⟩ R R

R ETM D ATM

More Practice with Reductions
Definition. . M is a TM.

Question. Show that is undecidable.

Proof. Reduce to .

Goal: Given , convert it to a new Turing machine s.t.

 accepts if and only if is regular.

Idea: Let's try a similar idea as the last reduction

REGULARTM = {⟨M⟩ | L(M) is regular}

REGULARTM

ATM REGULARTM

⟨M, w⟩ Mnew

M w L(Mnew)

 is undecidableREGULARTM
Proof. Let be a decider for . Then consider TM :

 = "On input

1. Create = "On input ,

 1. If has the form , then accept.

 2. Otherwise, run on and accept if accepts.''

2. Run on .

3. If accepts, accept. If rejects, reject.

• What is ?

R REGULARTM D

D ⟨M, w⟩

Mnew x

x 0n1n

M w M

R Mnew

R R

L(Mnew)

 is undecidableREGULARTM
Proof. Let be a decider for . Then consider TM :

 = "On input

1. Create = "On input ,

 1. If has the form , then accept.

 2. Otherwise, run on and accept if accepts.''

2. Run on .

3. If accepts, accept. If rejects, reject.

• Suppose accepts , then accepts all ,

• Suppose does not accept , then only accepts

R REGULARTM D

D ⟨M, w⟩

Mnew x

x 0n1n

M w M

R Mnew

R R

M w Mnew x L(Mnew) = Σ*

M w Mnew 0n1n

 is undecidableREGULARTM
Proof. Let be a decider for . Then consider TM :

 = "On input

1. Create = "On input ,

 1. If has the form , then accept.

 2. Otherwise, run on and accept if accepts.''

2. Run on .

3. If accepts, accept. If rejects, reject.

• accepts if and only if is regular.

R REGULARTM D

D ⟨M, w⟩

Mnew x

x 0n1n

M w M

R Mnew

R R

M w L(Mnew) ∎

Exercise
Problem. Show that

 is undecidable.

Hint. Reduce to it.

EQTM = {⟨M, N⟩ | M, N are TMs and L(M) = L(N)}

ETM

Mapping Reducibility
• A technical formulation of reducibility that lets us prove more things

• Definition. Language is mapping reducible to language ,
denoted , if there exists a computable function ,
such that  
 for every

• The function is called the reduction from to

• A function is computable if some Turing machine
when given any input , halts with just the output on its tape.

A B
A ≤m B f : Σ* → Σ*

w ∈ A ⟺ f(w) ∈ B w

f A B

f : Σ* → Σ* M
w f(w)

Mapping Reducibility
• Definition. Language is mapping reducible to language ,

denoted , if there exists a computable function ,
such that  
 for every

• Remark. If then

A B
A ≤m B f : Σ* → Σ*

w ∈ A ⟺ f(w) ∈ B w

A ≤m B A ≤m B

Mapping Reducibility
• Using reductions to prove decidability:

• Theorem. If and is decidable, then is decidable.

• Why is this true?

• Using reductions to prove undecidability:

• Corollary. If and is undecidable, then is
undecidable.

A ≤m B B A

A ≤m B A B

Revisit Past Reductions
Reduction from to from last lecture:

• Suppose TM decides .

• Construct a decider for =  
"On input ,

• Run on .

• If rejects, then reject.

• If accepts, then simulate on . If enters accept state,
then accept; if enters reject state, then reject.

Question. Is this a mapping reduction from to ?

ATM HALTTM

R HALTTM

S ATM
⟨M, w⟩

R ⟨M, w⟩

R

R M w M
M

ATM HALTTM

Revisit Past Reductions
Key difference: Need to map "yes" instances to "yes" and "no" to "no".

Need a computable function that maps to such that

 iff

f ⟨M, w⟩ ⟨M′￼, w′￼⟩

⟨M, w⟩ ∈ ATM ⟨M′￼, w′￼⟩ ∈ HALTTM

Mapping Reduction: to ATM HALTTM
Reduction function computed by the following Turing machine:

 = "On input :

1. Construct the machine = "On input :

1. Run on .

2. If accepts, accept.

3. If rejects, go into an infinite loop.

4. Output "

F ⟨M, w⟩

M′￼ x

M x

M

M

⟨M′￼, w⟩

Why Mapping Reductions?
• Seem unnecessarily strict, can use informal reductions just fine to

prove undecidability

• Why force mapping from yes instances to yes, no to no?

• Useful to reason about Turing recognizability and unrecognizability

• Mapping reductions to prove recognizability:

• Theorem. If and is recognizable, then is recognizable.

• Mapping reductions to prove unrecognizability:

• Corollary. and is unrecognizable, then is
unrecognizable.

A ≤m B B A

A ≤m B A B

Exercise
• Review the reductions from earlier :

• From to

• From to

• From to

• Questions.

• Which of these are mapping reductions?

• Is it possible to have a mapping reduction in all these cases?

ATM ETM

ETM EQTM

ATM REGULARTM

No Mapping Reduction: to ATM ETM
• Earlier reduction is mapping reduction from to

• That is,

• What can we say about ?

• Since is not Turing recognizable, is also not Turing
recognizable.

• Found another example of a language that is not recognizable!

• Exercise. Show that is not mapping reducible to .

ATM ETM

ATM ≤m ETM

ETM

ATM ETM

ATM ETM

Undecidability Summary
Question. Which of these are decidable?

• Acceptance problems for DFA, CFG, TM
• Emptiness problems for DFA, CFG, TM
• Accepts all strings problem for DFA, CFG, TM
• Equivalence problems for DFA, CFG, TM

Rice's Theorem
Any nontrivial property of the languages recognized by Turing
machines is undecidable.

• Is the language empty? Is it finite? Is it infinite? Is it regular?
• Does the language contain strings in
• Is the language the same as the language of another TM?

We proved many such examples in class.
HW 6 will have more practice with these.

Σ*

Rice's Theorem
Any nontrivial property of the languages recognized by Turing
machines is undecidable.

• Is the language empty? Is it finite? Is it infinite? Is it regular?
• Does the language contain strings in
• Is the language the same as the language of another TM?

In contrast, questions about the TM's structure are decidable
• Has more than 15 states, has no transitions into its reject state, etc

Σ*

Decidable or Not
Questions about behavior of TM's computation on inputs may or may
not be decidable.
 
(HW 6 Problem): One of these is decidable, one is not:
• Does a given TM and input , does it ever move its head left

when running on ?
• Does a given TM and input , does it ever move its head three

times in a row when running on ?

M w
w
M w

w

