CSCI 361 Lecture 14: Undecidability

Shikha Singh

Announcements & Logistics

- Hand in **reading assignment # 9**
- Pick up **reading assignment #10**
 - Due start of class on Thur Oct 31
- HW 5 due this Wed Oct 30

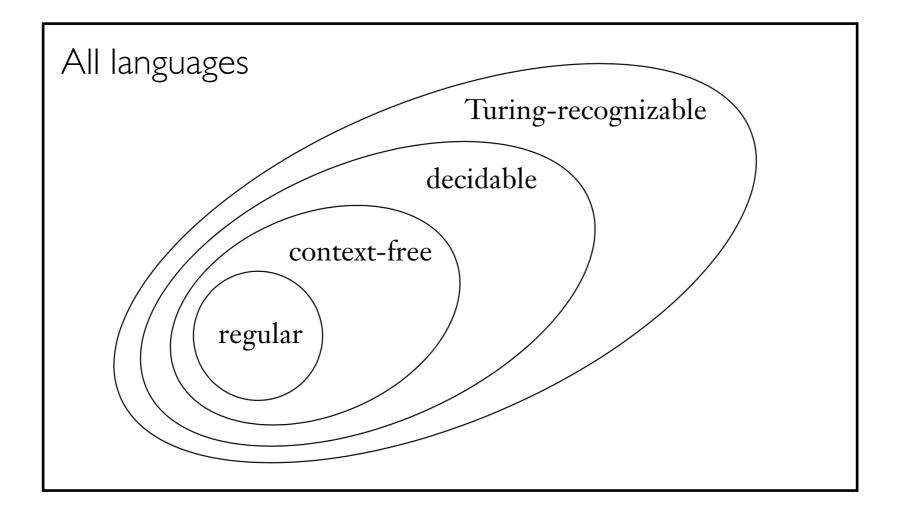
LastTime

- Discussed many examples of decision problems that are decidable
 - A_{DFA} , A_{CFG} : Does a given DFA/CFG accept a given string
 - E_{DFA} , E_{CFG} : Is the language of the given DFA/CFG empty?
 - Other variations using reduction to the above
- All these problems are about **semantic properties** of DFA/CFG

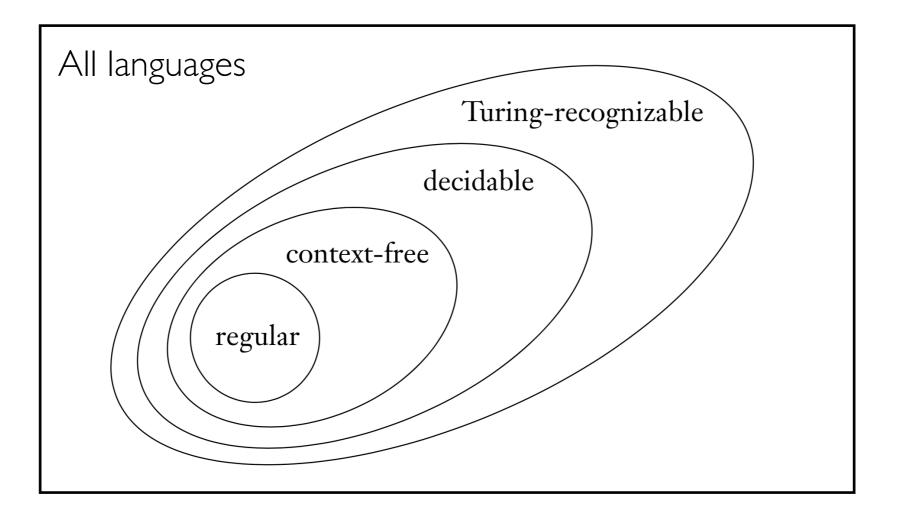
Today

- Show that similar semantic properties of TMs are undecidable
- Develop a strategy for recognizing and proving a bunch of languages are undecidable by TMs

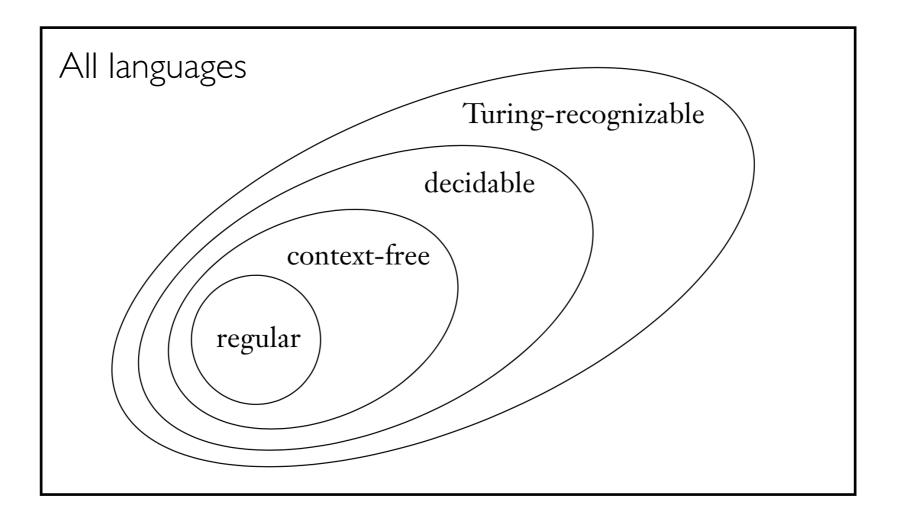
- There are **many** languages that cannot even be recognized by TMs
- Can argue by comparing set of all TMs to set of all languages



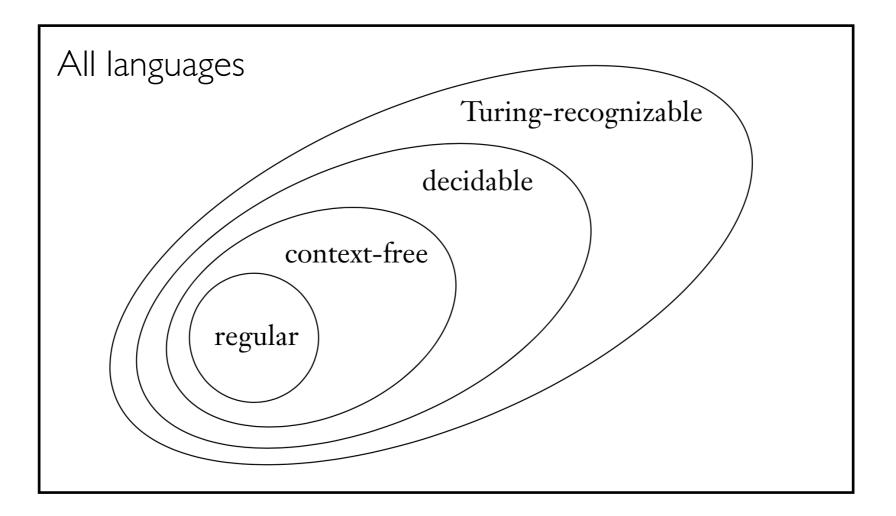
- **Question.** Why is the set of all TM's countable?
 - Σ^* is countable for any finite alphabet
 - TM's can be encoded: $M \to \langle M \rangle$ over a finite Σ



- Question. Why is the set of all languages \mathscr{L} uncountable?
 - Mapping between ${\mathscr L}$ and set of infinite binary sequences
 - Alternatively: \mathscr{L} is the power set of Σ^*



- **Takeaway**: There are infinitely many decision problems that cannot be solved by any TM
- Today: Specific problems that are undecidable and unrecognizable



Acceptance by TMs

 Consider the problem of given a TM and a string if the TM accepts the string, that is,

 $A_{\top M} = \{ \langle M, w \rangle \mid T \text{ is a TM and } w \in L(M) \}$

- Can we build a TM to decide this language?
 - Design a TM D such that D accepts $\langle M, w \rangle$ iff M accepts w
 - Such a TM is called a **universal TM** as it can simulate any TM

Universal Turing Machine

• Consider

 $A_{\top M} = \{ \langle M, w \rangle \mid T \text{ is a TM and } w \in L(M) \}$

- Let D be the following TM
 - On input $\langle M, w \rangle$
 - Run M on w, accept iff M accepts
- Question. Does D decide A_{TM} ?
 - No! May loop forever on $\langle M, w \rangle$ if M loops forever on w
- Question. Does D recognize A_{TM} ?
 - Yes! Thus A_{TM} is TM recognizable.

• (Proof by contradiction.) Suppose H is a decider for A_{TM}

 $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$

- Consider TM D that uses H as follows:
- $D = "On input \langle M \rangle$, where M is a TM
 - I. Run H on $\langle M, \langle M \rangle \rangle$
 - 2. If H accepts, then **reject**; If H rejects then **accept**
- Question. *D* takes as input a TM and is itself a TM, how can we get a contradiction?

• (Proof by contradiction.) Suppose H is a decider for A_{TM}

 $H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$

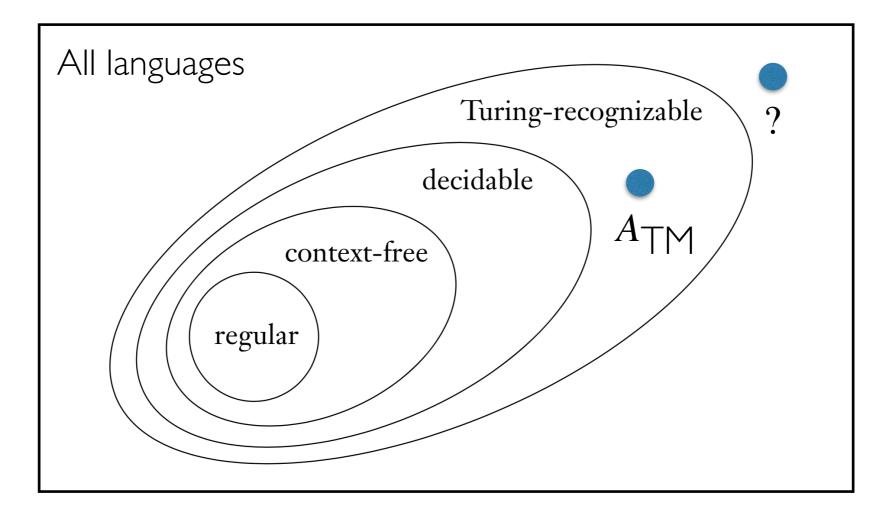
- Consider TM D that uses H as follows:
- $D = "On input \langle M \rangle$, where M is a TM
 - I. Run H on $\langle M, \langle M \rangle \rangle$
 - 2. If H accepts, then reject; If H rejects then accept
- Final step. If we give D, the input $\langle D \rangle$, then
 - D accepts $\langle D \rangle$ iff D rejects $\langle D \rangle \Rightarrow \Leftarrow \blacksquare$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3					
M_4	accept	accept			•••
•					
•			•		

Entry *i*, *j* is accept if M_i accepts $\langle M_j \rangle$

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	•••	$\langle D \rangle$	•••
M_1	accept	reject	accept	reject		accept	
M_2	\overline{accept}	accept	accept	accept		accept	
M_3	reject	reject	reject	reject	•••	reject	•••
M_4	accept	accept	\overline{reject}	reject		accept	
• •					•••		
D	reject	reject	accept	accept		?	
• •							•

- **Question.** A language that is neither decidable nor recognizable?
- Lemma. A language L is TM decidable iff both L and its complement \overline{L} are Turing recognizable.



Turing Recognizable vs Decidable

Lemma. A language L is TM decidable iff both L and its complement \overline{L} are Turing recognizable.

Proof.

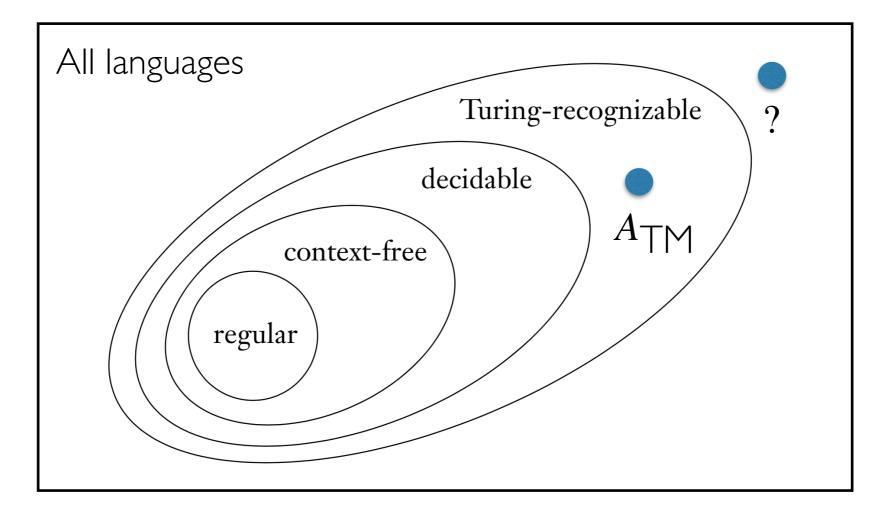
(\Rightarrow) By definition

(\Leftarrow) Consider M_L and $M_{\overline{L}}$ that recognize L and \overline{L} . Simulate both in parallel using two tapes

Accept if M_L accepts and reject if $M_{\overline{L}}$ accepts

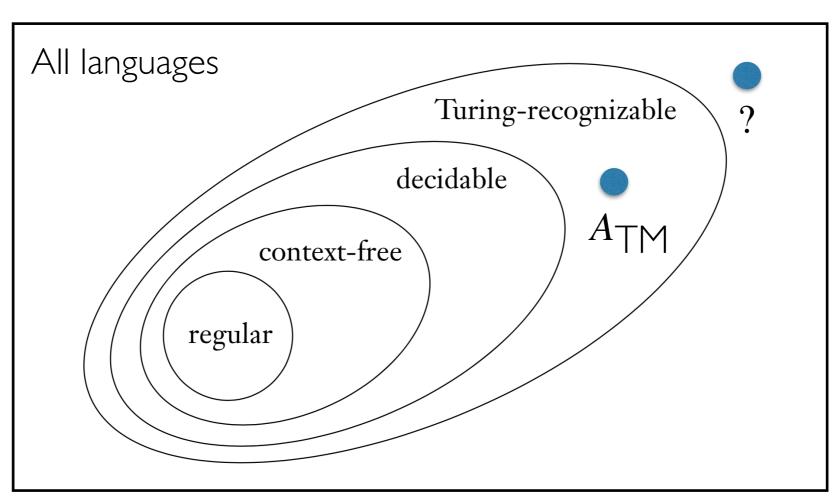
To appreciate the distinction between TM decidable and TM recognizable, let's see an example of the latter.

- Lemma. A language L is TM decidable iff both L and its complement \overline{L} are Turing recognizable.
- **Question.** What language is **not**TM recognizable?



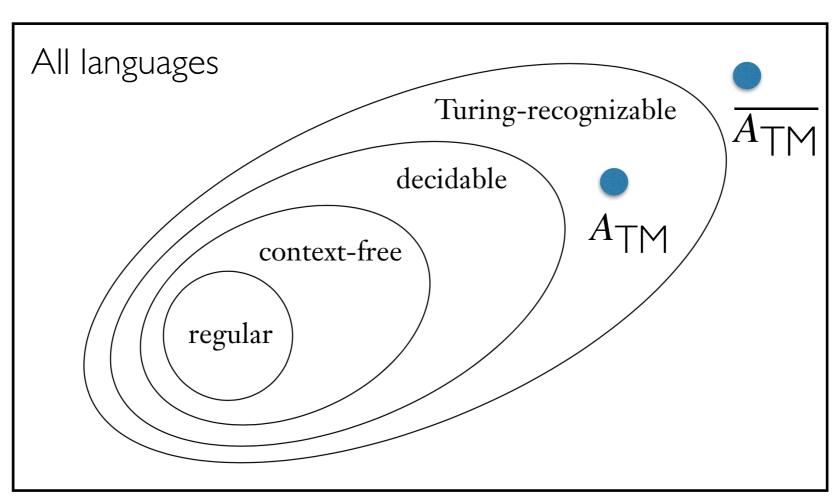
- Lemma. A language L is TM decidable iff both L and its complement \overline{L} are Turing recognizable.
- **Question.** What language is **not** TM recognizable?

• <u>Atm</u>



- Lemma. A language L is TM decidable iff both L and its complement \overline{L} are Turing recognizable.
- **Question.** What language is **not** TM recognizable?

• <u>Atm</u>



Halting Problem

- More natural and practical computational problem:
 - Does a given program ever go into an infinite loop on some input?
- Given a TM M and string w, does M halt on w?
 - HALT_{TM} = { $\langle M, w \rangle \mid M$ is a TM and M halts on w}
- How can we show that this problem is undecidable?

Reductions to Prove Undecidability

- **Problem.** Show that A is undecidable.
- Reduction-based proof:
 - Assume A is decidable
 - Reduce a **known undecidable problem** B to A (show that solving A would also solve B)
 - Reach a contradiction $\implies A$ cannot be decidable
- Which problem to use to show halting problem is undecidable?
 - A_{TM} (the only problem so far we know that is undecidable)

Halting Problem Undecidability Proof

- **Theorem.** HALT_{TM} is undecidable.
- Proof Idea:
 - We know A_{TM} is undecidable
 - Want to show HALT $_{\mbox{TM}}$ is undecidable
 - Need to reduce one to the other
 - Which direction does the reduction go?

Halting Problem Undecidability Proof

- **Theorem.** HALT_{TM} is undecidable.
- **Proof.** Suppose TM R decides HALT_{TM}.
- Construct a decider S for A_{TM} :
- S = " On input $\langle M, w \rangle$,
 - I. Run R on $\langle M, w \rangle$.
 - 2. If R rejects, then reject.
 - 3. If R accepts, then simulate M on w. If M enters accept state, then accept; if M enters reject state, then reject.
- S decides A_{TM} but A_{TM} is undecidable. $\Rightarrow \Leftarrow \blacksquare$

Does M Accept Anything?

• Theorem.

 $E_{\text{TM}} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \text{ is undecidable.}$

- **Proof Idea.** Suppose TM R decides E_{TM}
- Question. Can R be used to decide A_{TM} ?
 - Input to A_{TM} is $\langle M, w \rangle$ and input to R is just a TM
 - Want a TM M_w such that determining if $L(M_w)$ is empty or not determines whether w is accepted by M or not

$E_{\rm TM}$ is Undecidable

Proof. Suppose TM R decides E_{TM} . Consider the following decider D for A_{TM} :

- $D = "On input \langle M, w \rangle$
 - Encode a TM M_w that does the following:
 - $M_w =$ "On input x,
 - If $x \neq w$, reject.

w is hardcoded in description of $M_{\!_W}\!$, and not part of input of $M_{\!_W}$

- If x = w, then run M on w and accept if M does, else reject.
- Question. What can say about $L(M_w)$?
- Run R on $\langle M_w \rangle$. If R accepts, reject; if R rejects, accept.

Exercise

Problem. Show that $EQ_{TM} = \{\langle M, N \rangle \mid M, N \text{ are TMs and } L(M) = L(N)\}$ is undecidable.

Hint. Reduce E_{TM} to it.