CSCl 361 Lecture |3:
Decidability

Shikha Singh

Announcements & Logistics

Pick up reading assignment for Tues Oct 29

HW 5 released, due next Wed Oct 30
Questions about TM and decidability

Graded midterm feedback returned:

Mean: 83.9%, Median: 86.5%

Reminders: CS events

Gourd Party today in CS common room 3.30 pm
Pre-registration Info Session (WS & Spring 2025)

Midterm Discussion

Curved: Across the board +2/52 applied (3.84% points)
Midterm is just one part of overall assessment:
» Accounts for only 25% of final grade

Breakdown by question: - : .
e Attendance, Readings & Class Participation (10%)

e Assignments (30%)

e Survey Paper and Presentation (10%)

e Midterm Exam (25%)
2c and 2d next e Final Exam (25%)

Q4 was the most challenging

Did well on others

100
go P Assignment Mean
60
40
20
0
1 2.1 22 23 24

Question

3.1 SIvZ 4 5 6

So Far

Defined Turing machines, created example TMs
Discussed examples and variants of TM
Equivalence with multi-tape T™M and non-deterministic TM

Church-Turing thesis:

Intuitive notion

of algorithms

Turing machine

equals algorithms

Jloday and Next Week

Show TMs are more powerful than CFLs
Moving towards problems that are unsolvable
In our terminology, undecidable languages
Building towards undecidabllity:
Deciding semantic properties of DFAs/CFGs

Introduce 1dea of reductions

Models of Computation vs Power

Finite automaton * Sequencing, repetition
» Push-down automaton » Function calls/ simple recursion
- furing machine - Simple loops as well as multiple

recursive calls

‘Turing-recognizable

decidable

context-free

Jowards Unsolvabillity

+ Moving towards finding out what problems are unsolvable
- That s, not decidable by Turing machines
- These problems are about the behavior of other machines
* Programming language analog:
- Once you have a PL, we write an interpreter for the language
» Python interpreter for Python programs
* Input Is any Python program

- Code Is data: can be input to programs/TM

°L View: Syntactic vs Semantic Properties

+ Semantic property: properties that do no depending on the "code/
description” of the program but rather depend on the function it

computes (about its behavior on inputs)
* Program accepts some string containing an even # of |s

- Syntactic property: depend on the particular syntax of the program
(the description of the machine itself)

* Program contains an if-else block

- Software verification is all about making sure programs meet certain
specifications/requirements

- PL analog for what's coming: How hard Is software verification really?

Code I1s Data

- WIll soon design TMs that take other TMs as input and try answer
semantic properties of the input TM

- Jo get ready, we will first spend some time showing that when the
model of computation is restricted (automaton/CFGs), we can
actually answer semantic questions about them

- All these questions will be framed as decision problems

Example Problems

* In general, is 1t useful to be able to check a program's output on a
given Input: constantly used In verification

* Acceptance problems: is this string accepted by this machine?
- Appa = {(M,w) | MisaDFAand w € L(M)}

- Similar variant for NFA and regular expression
+ Acrg = {(G,w) | GisaCFGand w € L(G)}

* Similar variant for PDA

+ (Next class). Atpm={(M,w) | TisaTMandw € L(M)}

Empty-ness Checks

* Does this program to solve a decision problem ever output |?

 Emptiness problem:s:

+ Eppa = {(M) | Misa DFA and L(M) = @}

- Similar variant for NFA and regular expression
+ Ecrg={(G | GisaCFGand L(G) = @}

» Similar variant for PDA

+ (Next class). Etp={{(M,w) | TisaTMand L(M) = &}

Fquivalence Checks

- Given two programs, do their output match on all inputs?

- Equivalence problems:
« EQppa = {{(M,N) | M,N are DFAs and L(M) = L(N)}
- Similar variant for NFA/regular expression combinations

* (Next class). EQcraG =
(G, Gy) | Gy, G, are CFGs and L(G,) = L(G,)}

* Similar variant for PDA

* (Next class). EQTM =
{(M,N) | M,N are TMs and L(M) = L(N)}

Encodings: Code I1s Data

 Notice the use of angular brackets to represent the intput

- Eg. (G) is the encoding of G if G is a graph

- All these languages have inputs that are machines

- Need a way to encode general objects such as DFAs, CFGs, TMs into
strings over a finrte alphabet

» [he exact encoding scheme Is usually unimportant and rarely
explicrtly discussed

* In the first example we do, we will discuss the encoding of a DFA

* In later examples, we omit these details and assume the TM Is given a
reasonable encoding

Switch to Algorithms

» As Sipser puts It, we are at a "turning point” in the theory of
computation

» Using the Church-Turing thesis, we will assume that TM can
implement the algorithms we have discussed in class

+ E.g,aTM can covert a regular expression to an NFA, a PDA to a
CFG, etc.

» The detaills of how this conversion is handled i1s not important

Acceptance Problem for DFAs

Theorem. The language
Appa = {(M,w) | Misa DFA and w € L(M)} is decidable.

» Assume the DFA M = (Q, 2, 0, gy, I') Is encoded as a string
consisting of the states, followed by alphabet, followed by a list of

triples (g, x, 60(q, X)), start state and final states (each separated by #)
»+ Simulate the DFA M on w (how would this work?)

» Accept If M accepts, otherwise reject

Using Algorithms and Subroutines

Theorem. The following languages are decidable.
ANFA = (N, w) | MisaNFAand w € L(N)}

ARpx = {{R,w) | Ris a regular expression and w € L(R)}

What about CFGs!?

Theorem. Acp; = {(G,w) | GisaCFGandw € L(G)} is
decidable.

Question. How do we check it a grammar accepts a given string?

What about CFGs!?

Theorem. Acp; = {(G,w) | GisaCFGandw € L(G)} is
decidable.

Proof. NTM that decides this language:
On input (G, w) where G is a CFG:
- Starting from the start state, guess a transition from G
-+ Keep guessing until a string of non-terminals Is reached

- It w s the same as string produced, accept; else reject

What about T Ms!?

Question. Is Apv={{(M,w) | TisaTMandw € L(M)}
decidable!?

cmptiness lesting

Theorem. Eppa = {{(M) | M is a DFA and L(M) = @} is decidable.

Question. How do we check it a DFA never accepts a string!

Emptiness lesting for DFAS

Theorem. Eppa = {{(M) | M is a DFA and L(M) = @} is decidable.
Proof. 1M that decides this language:
On input (M) where M is a DFA:
+ Mark the start state of M

- Repeat until no new states are marked:

- Mark any state that has a transition coming from a
marked state

» |t no accept state Is marked, accept; otherwise reject

Emptiness lesting for CFGs

Theorem. Er = {(G | Gisa CFG and L(G) = @} is decidable.

Question. How do we check If a grammar never generates a string!

Emptiness lesting for CFGs

Theorem. Er = {(G | Gisa CFG and L(G) = @} is decidable.
Proof. 1M that decides this language:
On input {(G) where G is a CFG:
+ Mark all the terminals in G
+ Repeat until no new variables get marked:

»+ Mark any variable A — uu,---u;, such that each u; on the
RHS Is already marked

- If start variable § is marked, accept; otherwise reject

Class Exercise

Problem. Show that

ALLpra = {(M) | M is a DFA and L(M) = £*} is decidable

EQpra = {{M,N) | M,N are DFAs and L(M) = L(N)} is decidable.

Hint. Try to reduce it to one of the problems we have already
discussed!

What about CFG Equivalence!?

Question. Is EQrG =
(G, G,) | Gy, G, are CFGs and L(G,) = L(G,)} decidable?

—
w
o
=~
x
loe)
o)
[(e]

