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Announcements & Logistics
• Pick up reading assignment for Tues Oct 29

• HW 5 released, due next Wed Oct 30
• Questions about TM and decidability

• Graded midterm feedback returned:  

• Mean:  83.9%,  Median:  86.5%

• Reminders:  CS events
• Gourd Party today in CS common room 3.30 pm

• Pre-registration Info Session (WS & Spring 2025)



Midterm Discussion
• Curved:  Across the board +2/52 applied (3.84% points)
•  Midterm is just one part of overall assessment: 

• Accounts for only 25% of final grade
• Breakdown by question:

• Q4 was the most challenging
• 2c and 2d next 
• Did well on others



So Far
• Defined Turing machines, created example TMs
• Discussed examples and variants of  TM

• Equivalence with multi-tape TM and non-deterministic TM
• Church-Turing thesis:



Today and Next Week
• Show TMs are more powerful than CFLs
• Moving towards problems that are unsolvable 

• In our terminology, undecidable languages
• Building towards undecidability:

• Deciding semantic properties of DFAs/CFGs
• Introduce idea of reductions



Models of Computation vs Power
• Finite automaton

• Push-down automaton

• Turing machine

• Sequencing, repetition 

• Function calls/ simple recursion 

• Simple loops as well as multiple 
recursive calls



Towards Unsolvability 
• Moving towards finding out what problems are unsolvable

• That is, not decidable by Turing machines

• These problems are about the behavior of other machines

• Programming language analog:

• Once you have a PL, we write an interpreter for the language

• Python interpreter for Python programs 

• Input is any Python program

• Code is data:   can be input to programs/TM



PL View: Syntactic vs Semantic Properties
• Semantic property:  properties that do no depending on the "code/

description" of the program but rather depend on the function it 
computes (about its behavior on inputs)

• Program accepts some string containing an even # of 1s

• Syntactic property:  depend on the particular syntax of the program 
(the description of the machine itself)

• Program contains an if-else block

• Software verification is all about making sure programs meet certain 
specifications/requirements

• PL analog for what's coming:  How hard is software verification really?



Code is Data
• Will soon design TMs that take other TMs as input and try answer 

semantic properties of the input TM

• To get ready,  we will first spend some time showing that when the 
model of computation is restricted (automaton/CFGs), we can 
actually answer semantic questions about them

• All these questions will be framed as decision problems



Example Problems
• In general, is it useful to be able to check a program's output on a 

given input:   constantly used in verification 

• Acceptance problems:  is this string accepted by this machine?

•   

• Similar variant for NFA and regular expression

•   

• Similar variant for PDA

• (Next class).     

ADFA = {⟨M, w⟩ | M is a DFA and w ∈ L(M)}

ACFG = {⟨G, w⟩ | G is a CFG and w ∈ L(G)}

ATM = {⟨M, w⟩ | T is a TM and w ∈ L(M)}



Empty-ness Checks
• Does this program to solve a decision problem ever output 1?

• Emptiness problems:

•   

• Similar variant for NFA and regular expression

•   

• Similar variant for PDA

• (Next class).     

EDFA = {⟨M⟩ | M is a DFA and L(M) = ∅}

ECFG = {⟨G | G is a CFG and L(G) = ∅}

ETM = {⟨M, w⟩ | T is a TM and L(M) = ∅}



Equivalence Checks
• Given two programs, do their output match on all inputs?

• Equivalence problems:

•   

• Similar variant for NFA/regular expression combinations

• (Next class).    

• Similar variant for PDA

• (Next class).    

EQDFA = {⟨M, N⟩ | M, N are DFAs and L(M) = L(N)}

EQCFG =
{⟨G1, G2⟩ | G1, G2 are CFGs and L(G1) = L(G2)}

EQTM =
{⟨M, N⟩ | M, N are TMs and L(M) = L(N)}



Encodings:  Code is Data
• Notice the use of angular brackets to represent the intput

• E.g.  is the encoding of  if  is a graph

• All these languages have inputs that are machines

• Need a way to encode general objects such as DFAs, CFGs, TMs into 
strings over a finite alphabet

• The exact encoding scheme is usually unimportant and rarely 
explicitly discussed

• In the first example we do, we will discuss the encoding of a DFA

• In later examples,  we omit these details and assume the TM is given a 
reasonable encoding 

⟨G⟩ G G



Switch to Algorithms
• As Sipser puts it, we are at a "turning point" in the theory of 

computation 

• Using the Church-Turing thesis, we will assume that TM can 
implement the algorithms we have discussed in class

• E.g., a TM can covert a regular expression to an NFA, a PDA to a 
CFG, etc.

• The details of how this conversion is handled is not important



Acceptance Problem for DFAs
Theorem.  The language  

   is decidable.

• Assume the DFA  is encoded as a string 
consisting of the states, followed by alphabet, followed by a list of 
triples , start state and final states (each separated by )

• Simulate the DFA  on   (how would this work?)

• Accept if  accepts, otherwise reject

ADFA = {⟨M, w⟩ | M is a DFA and w ∈ L(M)}

M = (Q, Σ, δ, q0, F)

(q, x, δ(q, x)) #

M w

M



Using Algorithms and Subroutines 
Theorem.  The following languages are decidable. 
       

    

ANFA = {⟨N, w⟩ | M is a NFA and w ∈ L(N)}

AREX = {⟨R, w⟩ | Ris a regular expression and w ∈ L(R)}



What about CFGs?
Theorem.     is 
decidable.

Question.  How do we check if a grammar accepts a given string?    

ACFG = {⟨G, w⟩ | G is a CFG and w ∈ L(G)}



What about CFGs?
Theorem.     is 
decidable.  

Proof.    NTM that decides this language:

On input  where  is a CFG:

• Starting from the start state, guess a transition from 

• Keep guessing until a string of non-terminals is reached

• If  is the same as string produced, accept; else reject

ACFG = {⟨G, w⟩ | G is a CFG and w ∈ L(G)}

⟨G, w⟩ G

G

w



What about TMs?
Question.  Is     
decidable?

ATM = {⟨M, w⟩ | T is a TM and w ∈ L(M)}

1,304 × 869



Emptiness Testing
Theorem.     is decidable.

Question.  How do we check if a DFA never accepts a string?    

EDFA = {⟨M⟩ | M is a DFA and L(M) = ∅}



Emptiness Testing for DFAs
Theorem.     is decidable.

Proof.    TM that decides this language:

On input  where  is a DFA:

• Mark the start state of 

• Repeat until no new states are marked:

• Mark any state that has a transition coming from a 
marked state

• If no accept state is marked, accept; otherwise reject

EDFA = {⟨M⟩ | M is a DFA and L(M) = ∅}

⟨M⟩ M

M



Emptiness Testing for CFGs
Theorem.     is decidable.  

Question.  How do we check if a grammar never generates a string?   

ECFG = {⟨G | G is a CFG and L(G) = ∅}



Theorem.     is decidable.  

Proof.    TM that decides this language:

On input  where  is a CFG:

• Mark all the terminals in 

• Repeat until no new variables get marked:

• Mark any variable  such that each  on the 
RHS is already marked

• If start variable  is marked, accept; otherwise reject  

ECFG = {⟨G | G is a CFG and L(G) = ∅}

⟨G⟩ G

G

A → u1u2⋯uk ui

S

Emptiness Testing for CFGs



Class Exercise
Problem.  Show that  

   is decidable. 
 

   is decidable. 
 
  

Hint.   Try to reduce it to one of the problems we have already 
discussed! 

ALLDFA = {⟨M⟩ | M is a DFA and L(M) = Σ*}

EQDFA = {⟨M, N⟩ | M, N are DFAs and L(M) = L(N)}



What about CFG Equivalence?
Question. Is   

 decidable?
EQCFG =

{⟨G1, G2⟩ | G1, G2 are CFGs and L(G1) = L(G2)}

1,304 × 869


