
CSCI 361 Lecture 11:
Turing Machines

Shikha Singh

Announcements & Logistics
• HW 3 was due last night

• HW 4 released, due Wed Oct 16 at 10 pm

• Hand in reading questions # 8

• No lecture on Tues (Oct 15): Reading period
• No reading assignment for Thurs Oct 17/ Tues Oct 22

• Reminder: tomorrow colloquium (if not Mountain Day)
• What I did Last Summer (Research)

• CSCI 361 Midterm on Oct 22 (Tuesday):
• In class exam, open notes, 75 mins
• Will release practice exam/questions early next week
• Solved exercises in the book are also good for practice!

Last Time
• Intuition behind the equivalence CFL NPDA

• Pumping lemma for CFL and how to use it

⟺

Today
• Wrap up CFLs
• Start new model of computation: Turing machines

Pumping Lemma: CFLs
• Statement: If is a CFL, then there is a number (the pumping

length) where for any of length at least , it is possible to
divide into five pieces satisfying the conditions

1.

2.

3. For each ,

• Note that can appear anywhere in the string as long as they are
no longer than symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p

Pumping Lemma Questions
• Question. What does it mean for a to satisfy the pumping lemma?

• Question. What does it mean to show that does not satisfy PL?

• Question. If a language satisfies PL for CFLs, does it mean it is
context-free?

• Question. If a language is context-free, does it have to satisfy PL?

L

L

Pumping Lemma Proof Tips
• Proofs using the PL devolve to examining a bunch of cases

• Can become painful to read/write

• Try to use closure properties whenever possible

• Try to select that will lead to as few cases as possible

• Try to cover as many similar cases at once as possible: if several
cases are analogous, address them in one general argument

w

CFL: Intersection Closure
• Theorem. If is a context-free language and is a regular language

then is context-free.

• Proof Idea.

• be a PDA that recognizes and be DFA that recognizes

• Let , be the set of states of , create a new PDA with
states

• simulates as well as and accepts a string if both accept

• Ignores 's stack on 's transitions, just remembers states of

C R
L ∩ R

P C M R

Q Q′ P, M P′

Q × Q′

P′ P M

P M M

CFL: Intersection Closure
• Note. Intersection of two CFLs is not necessarily context-free!

• Example?

Context-Free or Not?
• Question. One of these languages is CF and the other is not, can

you identify which is which?

•

•

L1 = {w an bn wR | w ∈ {a, b}*, n ≥ 0}

L2 = {w an wR bn | w ∈ {a, b}*, n ≥ 0}

Context-Free or Not?
•

•

• Answer. is context-free but is not.

• Intuition: need to match two "pairs": can do it if they are next to
each other but not if they are separated

• CFG for ?

•

•

• Exercise. Can show is not CF using the pumping lemma, use

L1 = {w an bn wR | w ∈ {a, b}*, n ≥ 0}

L2 = {w an wR bn | w ∈ {a, b}*, n ≥ 0}

L1 L2

L1

S → aSa | bSb | A

A → aAb |ε

L2
w = bpapbpbp

Examples of Non CFLs
• Pairing/Counting examples we have seen:

•

• HW: language of palindromes with equal # of 1s and 0s

• Strings over with equal # of a's, b's and c's

•

•

• Non-linear counting examples:

•

• Intuition: structure is too rigid to be able to be "pumped"

{anbncn | n ≥ 0}, {anbnan}, {ww | w ∈ {a, b}*}

{a, b, c}

{anbmanbm | n, m ≥ 0}

{w an wR bn | w ∈ {a, b}*, n ≥ 0}

{a2n | n ≥ 0}, {ap | p is a prime}, {an2 | n ≥ 0}

Moving Up

Firing Squad Problem?
• https://youtu.be/xV1aKUdlljU?si=yM4N4WiLNYL-QKnT

https://youtu.be/xV1aKUdlljU?si=yM4N4WiLNYL-QKnT

Turing Machines
• Finite number of states

• Infinite tape (memory)

• Read-write head that can move right and left on the tape

• Can modify the input

• Special accept/reject states

Image by Jeff Erickson

Formal Definition
• A Turing Machine is a 7-tuple ,

where are all finite sets

• is the set of states

• is the input alphabet and does not contain the blank symbol

• is the tape alphabet where and

• is the transition function

• are the start, accept and reject states

where

M = (Q, Σ, Γ, δ, q0, qaccept, qreject)

Q, Σ, Γ

Q

Σ ⊔

Γ ⊔ ∈ Γ Σ ⊂ Γ

δ : Q × Γ → Q × Γ × {L, R}

q0, qaccept, qreject ∈ Q

qaccept ≠ qreject

How a TM Computes
• Initially, input on the leftmost squares, rest

has and head of the TM in the leftmost position

• The computation proceeds using : can move left or right, alter tape
contents and change states

• Configuration of a TM: current state, tape contents & head location

• Written as : Current state is , current tape contents is ,
current head location is first symbol of

w = w1w2⋯wn ∈ Σ* n
⊔

δ

uqv q uv
v

How a TM Computes
• A configuration yields a configuration if the TM can legally go

from to using its transition function

• Consider symbols and strings then

 if , and

 if

C1 C2
C1 C2

a, b, c ∈ Γ u, v ∈ Γ*

ua qi bv yields u qj acv δ(qi, b) = (qj, c, L)

ua qi bv yields uac qj v δ(qi, b) = (qj, c, R)

Language of a TM
• Start configuration:

• Accepting configuration if the current state is

• Rejecting configuration if the current state is

• A TM accepts an input if a sequence of configurations
 exist such that

• is the start configuration, each yields and is an
accepting configuration

• The set of strings accepted by is the language recognized by ,
denoted

q0w

qaccept

qreject

M w
C1, …, Ck

C1 Ci Ci+1 Ck

M M
L(M)

Turing Machine Loops
• An important distinction between DFA/PDA and a TM

• On an input , a TM can:

• Accept (and halt)

• Reject (and halt)

• "Loop" on an input (never halt): this is new!

• Definition (Decidable). A language is TM-decidable or
decidable if there is a TM that accepts every string in and rejects
every string not in (i.e., it halts on all inputs in)

• A TM is decider if it halts on every input in

w

w

w

w

L
L

L Σ*

Σ*

• Example TM: Consider a TM for the language A = {02n | n ≥ 0}

Each transition of the form x → y, D means
“upon reading x, replace it with symbol y and
move the tape head in direction D”. If y is
omitted x is left unchanged

State diagram: low-level description

Medium-Level Description
Consider a TM for for the language :

"On input string ,

1. Sweep left to right across the tape, crossing off every other zero.

2. If in Stage 1 and there is a single zero, accept

3. If in Stage 1 and there are more than one odd zeros, reject

4. Return to the lefthand end of tape and go to stage 1."

Call such description medium level: says how the TM works but not as
explicit as a state-diagram.

M A = {02n | n ≥ 0}

M = w

• Example TM: Consider a TM for the language A = {02n | n ≥ 0}

Each transition of the form x → y, D means
“upon reading x, replace it with symbol y and
move the tape head in direction D”. If y is
omitted x is left unchanged

Levels of Description
• Low-level description using and state diagram provides a complete

picture but quickly become unwieldy

• Stick to "medium-level" description from now on

• Describes how the TM works in English

• What is OK: can include anything in a high-level description, as
long as you are convinced that, if you had to, you could design a
(low-level) Turing machine for it!

• We will move on to high-level descriptions (algorithms) later

δ

Practice
• Exercise. Give a medium-level description of a TM that recognizes

L = {anbncn | n ≥ 0}

Why Study Turing Machines
• Not a good model to think about fast computation

• Fast algorithms are a subject of CS 256

• In this class, we are interested in finding out if we can solve a
problem at all

• To show a problem is not solvable, we need a model of what it
means to solve a problem

• Church-Turing Thesis:

