CSCl 361 Lecture ||
fTuring Machines

Shikha Singh

Announcements & Logistics

HW 3 was due last night
W 4 released, due Wed Oct 16 at |10 pm

Hand in reading questions # 8

No lecture on Tues (Oct |15): Reading perioc

No reading assisnment for Thurs Oct | // Tues Oct 22
Reminder: tomorrow colloquium (if not Mountain Day)
What | did Last Summer (Research)
CSCI 361 Midterm on Oct 22 (Tuesday):

In class exam, open notes, /5> mins

Wi

release practice exam/questions early next week

Solved exercises In the book are also good for practice!

L ast [Ime

Inturtion behind the equivalence CFL <= NPDA

Pumping lemma for CFL and how to use it

loday

Wrap up CFLs

Start new model of computation: Turing machines

Pumping Lemma: CFLs

- Statement: If L s a CFL, then there is a number p (the pumping
length) where for any s € L of length at least p, it Is possible to
divide s Into five pieces § = uvxyz satistying the conditions

. vyl >0
2. |vxy| <p
3. Foreachi> 0,uvixy'z €L

+ Note that vxy can appear anywhere in the string as long as they are
no longer than p symbols long

Pumping Lemma Questions

- Question. What does it mean for a L to satisfy the pumping lemma?
- Question. What does it mean to show that L does not satisty PL!

- Question. If a language satisfies PL for CFLs, does it mean 1t is
context-free!

- Question. If a language Is context-free, does It have to satisfy PL!

Pumping Lemma Proof T1ps

Proofs using the PL devolve to examining a bunch of cases
- Can become painful to read/write

- Iry to use closure properties whenever possible

» Try to select w that will lead to as few cases as possible

- Try to cover as many similar cases at once as possible: if several
cases are analogous, address them in one general argument

CFL: Intersection Closure

» Theorem. If Cis a context-free language and R Is a regular language
then L N R is context-free.

* Proof |dea.

» P be a PDA that recognizes C and M be DFA that recognizes R

- Let O, Q' be the set of states of P, M, create a new PDA P’ with
states O X Q'

» P’ simulates P as well as M and accepts a string if both accept

» lgnores P's stack on M's transitions, just remembers states of M

CFL: Intersection Closure

- Note. Intersection of two CFLs Is not necessarily context-free!

*+ Example!

Context-Free or Not!

+ Question. One of these languages is CF and the other Is not, can
you identifty which is which?

- Li={wa" b" wi | we {a,b}* n>0}

- L,=1{w a" wl b | we {a,b}*,n>0)}

Context-Free or Not!

- Li={wa" b" wt | we{a,b}*n>0)
c Ly={wa"wlb" | we {a,b}* n>0)}
- Answer. L, is context-free but L, is not.

» Inturtion: need to match two "pairs"; can do It if they are next to
each other but not If they are separated

» CFG for Ly!
+ S—>aSa | bShb | A
- A > aAb|e

 Exercise. Can show L, is not CF using the pumping lemma, use
w = bPaPbPb?

Examples of Non CFLs

- Pairing/Counting examples we have seen:

- {a"b"c" | n >0}, {a"b"a"}, {ww | we {a,b}*}

- HW. language of palindromes with equal # of |s and Os
- Strings over {a, b, c} with equal # of a's,b's and c's

- {a"b"a"b™ | n,m > 0}

- {wa"wl b | we{abl*,n>0)

+ Non-linear counting examples:

. {a® | n>0), {a” | pisaprimel, {a* | n>0)

» Inturtion: structure Is too rigid to be able to be "pumped"

Moving Up

All Languages

Recursively-Enumerable Languages
Recognized by Turing Machines

Movin
ving up Decidable Languages

Decidable by Turing Machine
0"1"2"

Context-free Languages

Push-down Automaton
0"1", wwh

Regular Languages

Finite Automaton
1*0*, (0 U 1)*0

Firing Squad Problem?

- https://youtu.be/xV | aKUdIl|U?si=yMAN4VWILNYL-OKn T

https://youtu.be/xV1aKUdlljU?si=yM4N4WiLNYL-QKnT

fTuring Machines

* Finite number of states

* Infinite tape (memory)

- Read-write head that can move right and left on the tape

- Can modify the input

- Special accept/reject states

Right Infinite Tape

a |'b|a|a/]Ly
Bidirectional
Read/Write
Head
g . qo
Finite-State reject
Control .—>q
q,

q accept

Write 0
0 Move left
© ° ~
o) ©| o

O
|jT|R|T|U|R|I|N|G|M|A|c|H|1|N|E| []
Write N
;

© o
O/©OC>
(0]

||0|R|T|U|R|I|N|G|M|A|C|H|I|N|E| HE
Write U

;

©@ o

o!@oo

|i|T|R|T|U|R|I|N|G|M|A|C|H|I|N|E| | | 2
Halt and

(@)
©O| o
T

A few iterations of a six-state Turing machine.

Image by Jeff Erickson

Formal Definrtion

. ATuring Machine is a 7-tuple M = (Q, 2,1, 0, g, Jaccept qreject)’

where Q, 2., 1" are all finite sets

* (Is the set of states

- 2. is the input alphabet and does not contain the blank symbol LI
* ' is the tape alphabet where €l and X C I’

* 0:0XI' > OXI'X{L,R} is the transition function

* 40> Gaccept> dreject € Q are the start, accept and reject states

where qaccept 7 dreject

How a [M Computes

+ Inttially, input w = wywy---w, € 2* on the leftmost n squares, rest
has LI and head of the TM in the leftmost position

+ The computation proceeds using o: can move left or right, alter tape
contents and change states

- Configuration of a TM: current state, tape contents & head location

» Written as uqgv: Current state Is g, current tape contents Is uy,

current head location is first symbol of v

: |

How a [M Computes

» A configuration C yields a configuration C, if the TM can legally go

from C; to C, using its transition function

» Consider symbols a, b, c € I" and strings u,v € I'* then
ua q; bv yields u g; acv if o(q;, b) = (g;, ¢, L), and

ua q; bv yields uac g; v if o(g;, b) = (g;, ¢, R)

: |

Language of a | M

- Start configuration: ggw

. Accepting configuration If the current state Is Jaccept
. Rejecting configuration If the current state Is dreject

- ATM M accepts an input w If a sequence of configurations
Ci, ..., C, exist such that

» C, is the start configuration, each C; yields C;,; and C, is an

accepting configuration

» The set of strings accepted by M is the language recognized by M,
denoted L(M)

furing Machine Loops

- An important distinction between DFA/PDA and a TM
» Onan input w,a M can:

» Accept w (and halt)

»+ Reject w (and halt)

+ "Loop" on an input w (never halt): this is new!

- Definition (Decidable). A language L is TM-decidable or
decidable if there is a TM that accepts every string in L and rejects

every string not in L (i.e., it halts on all inputs in %)

+ A TM is decider If it halts on every input in X*

. Example TM: Consider aTM for the language A = {0% | n > 0}

Each transition of the form x = y, D means
“upon reading x, replace 1t with symbol y and
move the tape head in direction D". Ify is
omitted x Is left unchanged

u—R
x—R

State diagram: low-level description

Medium-Level Description

Consider aTM M for for the language A = {0 | n > 0}):

M = "On input string w,
|, Sweep left to right across the tape, crossing off every other zero.
2. If in Stage | and there is a single zero, accept
3. Ifin Stage | and there are more than one odd zeros, reject
4. Return to the lefthand end of tape and go to stage |."

Call such description medium level: says how the TM works but not as
explicit as a state-diagram.

. Example TM: Consider aTM for the language A = {0% | n > 0}

Each transition of the form x = y, D means
“upon reading x, replace 1t with symbol y and
move the tape head in direction D". Ify is
omitted x Is left unchanged

u—R
x—R

| evels of Description

» Low-level description using 0 and state diagram provides a complete

bicture but quickly become unwieldy
- Stick to "medium-level” description from now on
» Describes how the TM works in English

+ What is OK: can include anything in a high-level description, as
long as you are convinced that, if you had to, you could design a

(low-level) Turing machine for it!

- We will move on to high-level descriptions (algorithms) later

Practice

- Exercise. Give a medium-level description of a TM that recognizes
L={a"b"c" | n>0}

Why Study Turing Machines

+ Not a good model to think about fast computation
» Fast algorithms are a subject of CS 256

- In this class, we are interested in finding out If we can solve a
problem at all

- Jo show a problem is not solvable, we need a model of what it
means to solve a problem

» Church-Turing Thesis:

Turing machine
algorithms

Intuitive notion

of algorithms

equals

