
CSCI 361 Lecture 10:
Context-Free Languages III

Shikha Singh

Announcements & Logistics
• HW 3 due tomorrow at 10 pm

• Please ensure that any DFA/ Parse tree images attached are clear
• You can use figure flags to ensure LaTeX places them in the right spot

• Hand in reading questions # 7 and pick up reading questions # 8

• CSCI 361 Midterm on Oct 22 (Tuesday):
• In class exam 75 mins exam
• Can bring your notes but no screens allowed
• A textbook will be available for reference

Last Time
• Introduced a push-down automata

• NFA with an infinite stack
• Computation model equivalent of context-free-grammars

Today and Coming Lectures
• Intuition behind CFL Push-down automata (PDA)

• Pumping lemma to prove non-context-free
• Next lecture: Turing machines

⟺

Equivalence: CFG PDA⟺

Theorem. A language is context-free if and only it is
recognized by some (non-deterministic) pushdown automaton.

Note: Unlike DFA and NFA, non-deterministic PDAs are more
powerful than deterministic PDAs.

Won't prove this formally but will
discuss high-level intuition
towards the end of lecture

Intuition: CFG PDA⟹
• Consider a CFG

• Construct a PDA with three main states: start, loop and accept
state (some extra states for bookkeeping)

• Start by putting on the stack

• Each time top of stack is a variable , guess a rule of the type
replace with RHS of the rule

• Each time top of stack is a terminal match it to the current input
symbol (computation dies off it they don't match)

• If you reach bottom of stack at any point in a branch, accept

• All variables have been replaced and non-terminals matched

G = (V, Σ, R, S)

S

A
A → u A

Example: CFG PDA⟹

Intuition: PDA CFG⟹
• Wlog assume the PDA has one accept state, empties stack before

accepting and each move is a push or pop (but not both)

• Let be the states of the PDA

• Create variables for each pair of states:

• generates all strings that take the PDA from to starting from
an empty stack and ending at an empty stack

• Such strings can also take PDA from to from a non-empty
stack returning to exactly the same stack contents

• Start variable is where is start state and is accept state

Q

{Apq | p, q ∈ Q}

Apq p q

p q

Aq0,qf
q0 qf

Intuition: PDA CFG⟹
• Add the rules

• for every triple

• for

Apq → AprArq p, q, r ∈ Q

App → ε p ∈ Q

Intuition: PDA CFG⟹
• Finally, if there are rules of the form and

• To simulate this add the rule where PDA goes from
to after pushing and to after popping

(p, a, ϵ) → (r, u)
(b, s, u) → (q, ϵ)

Apq → aArsb p
q a s r b

Non-Context-Free Languages
• Proved using a similar "pumping lemma" as regular languages

• With respect to regular languages:

• pumping lemma exploits the fact that if a string is long enough,
a state is repeated in the DFA for the language (loop)

• With respect to CFLs:

• pumping lemma exploits the fact that if a string is long enough,
deriving it requires recursion (repeated use of a variable)

• Lemma based length of parse trees for derivations

Parse Trees and CFGs
• Consider the CFG for :

• Consider a parse tree for

A = {w#wR | w ∈ {a, b}*}

S → aSa | bSb | #

w = aab#baa

Parse Trees and CFGs
• Variable is repeated

• Can "pump up" or "pump down" to create
strings in the language

• Replace yellow with violet:

• Replace violet with yellow:

S

aa#aa

aabb#bba

Pumping Lemma: CFLs
• Statement: If is a CFL, then there is a number (the pumping

length) where for any of length at least , it is possible to
divide into five pieces satisfying the conditions

1.

2.

3. For each ,

• Note that can appear anywhere in the string as long as they are
no longer than symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p

Non-Context-Free Languages

Pumping Lemma (CFL): Intuition
• If the grammar generates a long enough string then the parse tree

for that derivation must be "tall enough"

• If each node in a tree has at most children and the tree has height
, what is the maximum number of leaves it can have?

•

• If a tree has at least leaves and each node has degree at most ,
what can we say about the height?

• At least

b
h

bh

bh+1 b

h + 1

Pumping Lemma (CFL): Proof
• Consider a CFG and let be the maximum number of symbols on

the RHS of

• Let be the number of variables

• Consider a of length at least

• Consider the derivation of in the smallest parse tree

• Each node has at most children

• Num of leaves =

• What can we conclude about the height of the parse tree?

• Longest path from root to leaf (height) is at least

G b
G

|V |

w ∈ L(G) b|V|+1

w

b

|w | ≥ b|V|+1

|V | + 1

Non-Context-Free Languages
• Number of variables in a path with edges is

• Some variable must be repeated in this derivation

|V | + 1 |V | + 1

Non-Context-Free Languages
• Let second occurrence of repeated variable generate and first

occurrence must then generate a string of the form

• Overall the string must contain and is of the form

R x
vxy

vxy uvxyv

Non-Context-Free Languages
• Takeaway: Can replace the smaller subtree under the second

occurrence of with the larger one and still have a valid derivationR

Non-Context-Free Languages
• Condition 3: Strings of the form and should all be

valid strings in the language
uvixyiz uxy

Non-Context-Free Languages
• Condition 1: Both and should not be . If they were both

then then smaller parse tree generating generates but this
violates our assumption that we started with the smallest parse tree.

v y ε ε
uxz w

Non-Context-Free Languages
• Condition 2: : is chosen to be among the bottom

 variables and is the longest path in the parse tree, then the
subtree is at most high and thus

|vxy | ≤ p R
|V | + 1

vxy |V | + 1 |vxy | ≤ 2|V|+1 = p

Using the Pumping Lemma
• Problem. Apply the pumping lemma to prove that the language

 is not context-free.L = {anbncn | n ≥ 0}

Using the Pumping Lemma
• Problem. Apply the pumping lemma to prove that the language

 is not context-free.

• Proof. Assume is context-free with pumping length .

• Select and has length

• Consider all possible ways to partition into s.t. condition (2) and
(3) hold: and

• Notice that cannot be made up of all three letters (why?)

{anbncn | n ≥ 0}

L p

w = apbpcp ∈ L 3p ≥ p

w uvxyz
|vy | > 0 |vxy | ≤ p

vxy

Using the Pumping Lemma
• Problem. Apply the pumping lemma to prove that the language

 is not context-free.

• Proof. Assume is context-free with pumping length .

• Select and has length

• Consider all possible ways to partition into s.t. condition (2) and
(3) hold: and

• Case 1. At least one of or contains two distinct symbols. Then
 contains symbols out of order and

• Case 2. Both and contain the same symbol (both are or
both or both then

{anbncn | n ≥ 0}

L p

w = apbpcp ∈ L 3p ≥ p

w uvxyz
|vy | > 0 |vxy | ≤ p

v y
xv2xy2z ∉ L

v y a′ s
b′ s c′ s uxz ∉ B

Pumping Lemma: CFLs
• Statement: If is a CFL, then there is a number (the pumping

length) where for any of length at least , it is possible to
divide into five pieces satisfying the conditions

1.

2.

3. For each ,

• Note that can appear anywhere in the string as long as they are
no longer than symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p

Practice
• Problem. Apply the pumping lemma to prove that the language

 is not context-free.{ww | w ∈ {0,1}*}

Practice
• Problem. Apply the pumping lemma to prove that the language

 is not context-free.

• Choosing does not work

• Matching two different "pairs" of strings is essence of being non CFL

• Another try to capture this:

{ww | w ∈ {0,1}*}

w = 0p10p1

w = 0p1p0p1p

Pumping Lemma Proof Tips
• Proofs using the PL devolve to examining a bunch of cases

• Can become painful to read/write

• Try to use closure properties whenever possible

• Try to select that will lead to as few cases as possible

• Try to cover as many similar cases at once as possible: if several
cases are analogous, address them in one general argument

w

CFL: Intersection Closure
• Intersection of a CFL with a regular language is context-free

• Intersection of two CFLs is not necessarily context-free

• Example?

