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Announcements & Logistics
• HW 3 due tomorrow at 10 pm

• Please ensure that any DFA/ Parse tree images attached are clear
• You can use figure flags to ensure LaTeX places them in the right spot

• Hand in reading questions # 7  and pick up reading questions # 8

• CSCI 361 Midterm on Oct 22 (Tuesday):  
• In class exam 75 mins exam 
• Can bring your notes but no screens allowed
• A textbook will be available for reference



Last Time
• Introduced a push-down automata

• NFA with an infinite stack
• Computation model equivalent of context-free-grammars



Today and Coming Lectures
• Intuition behind CFL  Push-down automata (PDA)

• Pumping lemma to prove non-context-free
• Next lecture:  Turing machines

⟺



Equivalence:  CFG  PDA⟺

Theorem.  A language is context-free if and only it is 
recognized by some (non-deterministic) pushdown automaton.

Note:  Unlike DFA and NFA, non-deterministic PDAs are more 
powerful than deterministic PDAs.

Won't prove this formally but will 
discuss high-level intuition 
towards the end of lecture



Intuition:  CFG  PDA⟹
• Consider a CFG 

• Construct a PDA with three main states:  start, loop and accept 
state (some extra states for bookkeeping)

• Start by putting  on the stack

• Each time top of stack is a variable , guess a rule of the type 
replace  with RHS of the rule 

• Each time top of stack is a terminal match it to the current input 
symbol (computation dies off it they don't match)

• If you reach bottom of stack at any point in a branch, accept 

• All variables have been replaced and non-terminals matched

G = (V, Σ, R, S)

S

A
A → u A



Example:  CFG  PDA⟹



Intuition:  PDA  CFG⟹
• Wlog assume the PDA has one accept state, empties stack before 

accepting and each move is a push or pop (but not both)

• Let  be the states of the PDA

• Create variables for each pair of states: 

•  generates all strings that take the PDA from  to  starting from 
an empty stack and ending at an empty stack

• Such strings can also take PDA from  to  from a non-empty 
stack returning to exactly the same stack contents

• Start variable is  where  is start state and  is accept state

Q

{Apq | p, q ∈ Q}

Apq p q

p q

Aq0,qf
q0 qf



Intuition:  PDA  CFG⟹
• Add the rules

•  for every triple 

•  for 

Apq → AprArq p, q, r ∈ Q

App → ε p ∈ Q



Intuition:  PDA  CFG⟹
• Finally, if there are rules of the form  and 

• To simulate this add the rule  where PDA goes from  
to  after pushing  and  to  after popping 

(p, a, ϵ) → (r, u)
(b, s, u) → (q, ϵ)

Apq → aArsb p
q a s r b



Non-Context-Free Languages
• Proved using a similar "pumping lemma" as regular languages

• With respect to regular languages:

• pumping lemma exploits the fact that if a string is long enough, 
a state is repeated in the DFA for the language (loop)

• With respect to CFLs:

• pumping lemma exploits the fact that if a string is long enough, 
deriving it requires recursion (repeated use of a variable) 

• Lemma based length of parse trees for derivations



Parse Trees and CFGs
• Consider the CFG for : 

 
 

• Consider a parse tree for 

A = {w#wR | w ∈ {a, b}*}

S → aSa | bSb | #

w = aab#baa



Parse Trees and CFGs
• Variable  is repeated

• Can "pump up" or "pump down" to create 
strings in the language

• Replace yellow with violet: 

• Replace violet with yellow:  

S

aa#aa

aabb#bba



Pumping Lemma:  CFLs
• Statement:  If  is a CFL, then there is a number  (the pumping 

length) where for any  of length at least , it is possible to 
divide  into five pieces  satisfying the conditions

1.

2.   

3. For each , 

• Note that  can appear anywhere in the string as long as they are 
no longer than  symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p



Non-Context-Free Languages



Pumping Lemma (CFL):  Intuition
• If the grammar generates a long enough string then the parse tree 

for that derivation must be "tall enough"

• If each node in a tree has at most  children and the tree has height 
, what is the maximum number of leaves it can have?

•

• If a tree has at least  leaves and each node has degree at most , 
what can we say about the height?

• At least 

b
h

bh

bh+1 b

h + 1



Pumping Lemma (CFL):  Proof
• Consider a CFG  and let  be the maximum number of symbols on 

the RHS of 

• Let  be the number of variables

• Consider a  of length at least  

• Consider the derivation of  in the smallest parse tree 

• Each node has at most  children

• Num of leaves = 

• What can we conclude about the height of the parse tree?

• Longest path from root to leaf (height) is at least 

G b
G

|V |

w ∈ L(G) b|V|+1

w

b

|w | ≥ b|V|+1

|V | + 1



Non-Context-Free Languages
• Number of variables in a path with  edges is 

• Some variable must be repeated in this derivation

|V | + 1 |V | + 1



Non-Context-Free Languages
• Let second occurrence of repeated variable  generate  and first 

occurrence must then generate a string of the form  

• Overall the string must contain  and is of the form 

R x
vxy

vxy uvxyv



Non-Context-Free Languages
• Takeaway:  Can replace the smaller subtree under the second 

occurrence of  with the larger one and still have a valid derivationR



Non-Context-Free Languages
• Condition 3:  Strings of the form  and  should all be 

valid strings in the language
uvixyiz uxy



Non-Context-Free Languages
• Condition 1: Both  and  should not be .  If they were both  

then then smaller parse tree generating  generates  but this 
violates our assumption that we started with the smallest parse tree.

v y ε ε
uxz w



Non-Context-Free Languages
• Condition 2: :   is chosen to be among the bottom 

 variables and is the longest path in the parse tree, then the 
subtree  is at most  high and thus 

|vxy | ≤ p R
|V | + 1

vxy |V | + 1 |vxy | ≤ 2|V|+1 = p



Using the Pumping Lemma
• Problem.  Apply the pumping lemma to prove that the language 

 is not context-free.L = {anbncn | n ≥ 0}



Using the Pumping Lemma
• Problem.  Apply the pumping lemma to prove that the language 

 is not context-free.

• Proof.  Assume  is context-free with pumping length .  

• Select   and has length 

• Consider all possible ways to partition  into  s.t.  condition (2) and 
(3) hold:   and 

• Notice that  cannot be made up of all three letters (why?)

{anbncn | n ≥ 0}

L p

w = apbpcp ∈ L 3p ≥ p

w uvxyz
|vy | > 0 |vxy | ≤ p

vxy



Using the Pumping Lemma
• Problem.  Apply the pumping lemma to prove that the language 

 is not context-free.

• Proof.  Assume  is context-free with pumping length .  

• Select   and has length 

• Consider all possible ways to partition  into  s.t.  condition (2) and 
(3) hold:   and 

• Case 1. At least one of  or  contains two distinct symbols.  Then 
 contains symbols out of order and  

• Case 2. Both  and  contain the same symbol (both are  or 
both  or both  then 

{anbncn | n ≥ 0}

L p

w = apbpcp ∈ L 3p ≥ p

w uvxyz
|vy | > 0 |vxy | ≤ p

v y
xv2xy2z ∉ L

v y a′ s
b′ s c′ s uxz ∉ B



Pumping Lemma:  CFLs
• Statement:  If  is a CFL, then there is a number  (the pumping 

length) where for any  of length at least , it is possible to 
divide  into five pieces  satisfying the conditions

1.

2.   

3. For each , 

• Note that  can appear anywhere in the string as long as they are 
no longer than  symbols long

L p
s ∈ L p

s s = uvxyz

|vy | > 0

|vxy | ≤ p

i ≥ 0 uvixyiz ∈ L

vxy
p



Practice
• Problem.  Apply the pumping lemma to prove that the language 

 is not context-free.{ww | w ∈ {0,1}*}



Practice
• Problem.  Apply the pumping lemma to prove that the language 

 is not context-free.

• Choosing  does not work 
 
 
 
 

• Matching two different "pairs" of strings is essence of being non CFL

• Another try to capture this:  

{ww | w ∈ {0,1}*}

w = 0p10p1

w = 0p1p0p1p



Pumping Lemma Proof  Tips
• Proofs using the PL devolve to examining a bunch of cases

• Can become painful to read/write

• Try to use closure properties whenever possible

• Try to select  that will lead to as few cases as possible

• Try to cover as many similar cases at once as possible:  if several 
cases are analogous, address them in one general argument

w



CFL:  Intersection Closure
• Intersection of a CFL with a regular language is context-free

• Intersection of two CFLs is not necessarily context-free

• Example?


