CS 361 Theory of Computation

Lecture | Introduction & Logistics

Shikha Singh

INntroductions

What is [heory of Computation?

What 1s Computation?

VWhat 1s Computation

Input

+

"Computer”

_ i —

T
0>

+

Output

Computers Now

Computers: Early 20th Century

arliest: Analytic Engine and Note G

Charles Babbage’s Analytic Engine was the first universal computing device ever
designed. It followed his Difference Engine for evaluating polynomial functions in
the 1830s. Both machines were mechanical and were never fully built at the time.
However, sophisticated algorithms were written for it by Babbage and Ada
Lovelace. In particular; Lovelace's Note G is the first ever published algorithm.

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 ef seq.)

| Data. Working Variables.
(vy [y [ows o Fov, Tov, oy Tay, Tov, Tov, e Wy ¥
(OJll (ol oM (ol I(eTH So)d i@} i) (o)l M(c) O (0]
‘ 0 0 0 0 0 0 0 0 0 0 0 0 0
Statement of Results. l ‘1) g (; 3 3 3 3 g g 3 3 g g
\EEOOOO00 o)]
1 X [V X1V, [V, 1V, 1V ; 2 2n | 20 | 2n [
I P O R S 2n—1 |
il v v v 2n41
| g i | 2n—1
v v vy, |0 ‘ ErEa
ol I 1 2a—1
Sl = v, eav, fov, 2 | ERTES
2V | 1 —1
B = PVis—3Vy[1Vy5 e]{ 0 | ‘ 0, W seees =g ::+l A
7| = vy =1V, Vi e } il |n=1
8 |+ Vo oV, IV, L] 2 2
20 g
9 | = IV, IV, BV e 0 CEOUN (R IRECU (RPH O (1 %"J A
\
P)
10 | X Va3V, [tViz vevenes : T-n B.-2—2'-‘=B.Ax
1 | (Vb VB Vig e e e el (s o | koo 0 Sl
< 1 2 | 2'2n+1 2
2t [l v, v, (49, ..o oL f=n [R
Bl =fv, -, 1V, oo —2n e 1 | e i
Bl v, v, vy e 2o 1 | [RSE (Wl RS R, 1
15| || =fev,+2v, v, 2n—1| 3 2"*3-‘
16| | Lcfvy xavy fovy, } | o ?2."_ 2"8- 1
L | P A T O — e H=2n S I I e PR
RHERY | SN AR A = 3 e e | W | |
4 5 \ lon o 2n 2n—12n-2
T | R R d L= S | | S | RN 03 & ; P
| W =As
RO UXPVy X4V, [8Vay e Vi z] e e S S SR | B e | e 0
VU | (S¥1 AV T ' 0 B A5 e R P S o By
el vy, v, e : e e e I o 0 {A,+ B A «)-B';A;}
g | -%v,,_lv, B e WO v: w—3(| e |t || e)
| Here follows a repetition of ions thirteen (o twenty-three. -
. Ay, —0
R I ,¥:=,¥: I R el o] O (o o A (RN - M R i || ettt gl s i e b B,
! Wy = v
2 W oW H=rtl=d41=5 1 a+ 1 o | o 3
25 +""1 + 'V3liVy S| 5V2 = OV; " |by a Variable-card,
I 5v; = oV, [bya Variable card. g

[1843] Lovelace's Note G computes Bernoulli numbers

Algorithms are Ancient

Algorithms have been around for thousands of years

Grade-school multiplication algorithm was invented by Babylonians

Fuclid's GCD algorithm (~300 BC)

1 2 1: procedure GCD(a,b)
1 2 4 2 while a # b do
3 if a > b then
X 2 6 4 a<+—a—>b
—3 5: else
/ 4 4 6: b—b—a
2 480 7 end if
8 end while
3224 9 return a
10: end procedure

How Do We Detfine an Algorithm!?

What constitutes an algorithm? How do we define it/
Inturtively, step by step process
- That eventually terminates and produces the desired output
To design algorithms, this inturtive understanding was sufficient
Components of an algorithm:
. What is the task the algorithm performs
How Is the task accomplished
s It correct! Is it efficient!

Question. Can all problems be solved by some algorithm?

Theory of Computation

Need a formal model of what it means to solve a problem
Theory of Computation:
Building a mathematical model for computation
Using the model to understand the power and limits of computation

Galin Insights that inform applications

Where 1t Started: Hilbert's Challenges

[1900-1930] David Hilbert identifies several mathematical problems
as the challenges for the coming century

Two of these problems concerned Computer Science

1862 - 1943

Hilbert's | Oth Problem

Hilbert's |0th problem [1900]:

Given a multivariate polynomial with integer coefficients, is there a

whether the equation has an integral solution

3x2 = 2xy—y*2—7=0 x> 4+y°41=0

x=1ly=2z7=-2

No solution

Integer solution

Hilbert's Entscheidungsproblem

Hilbert believed the answer was yes but many attempts failed

- o show It was not solvable, more formalization was needed of what it
means to use a "finite procedure” to solve a problem

Hilbert's Entscheidungsproblem (Decision problem) [1928];

that determines whether a given
mathematical statement is true or false?

Hilbert again believed the answer was yes:

» There was no such thing as an unsolvable problem

Attempts to Define Computation

[1930s: Post, Godel, Church] attempt to solve Hilbert's
Entscheidungsproblem

Post machine, lambda calculus, Godel machine

f /} A b {f

Emil Post Kurt Godel Alonzo Church

Birth of Com

buter Science

« [1936] As a graduate student Alan Turing (at age 24)
devised what I1s now called the Turing machine and used
't to devise an uncomputable problem A M. o,

» Church and Turing:

ON COMPUTABLE NUMBERS, WITH AN

[Nov. 12,

APPLICATION TO

THE ENTSCHEIDUNGSPROBLEM

» A-computable = Turing computable b A o

[Received 28 May, 1936.—Read 12 November, 1936.)

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral vaviable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and T have chosen the computable numbers

for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable

if its decimal can be written down by a machine.

In §§9. 10 T give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, ¢, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number

which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Gédelf. These results

+ Godel, *“Uber formal unentscheidbare Sitze der Principia Mathemetica und ver-
wandter Systeme, 1", Monatshefte Math. Phys., 38 (1931), 173-198.

xixl.,

a/a,L,
X/X,R, X/X,R, b/b,L,
X/X,R a/a,R b/b,R c/c,R c/c,L

go left until L

xllallallx||b|lbllx]||lcl||c

Head

Church and Turing Thesis

uring machines predates modern computer as we know It, yet there Is
no existing physical model that cannot be modeled by it

Church-Turing Thesis:

Inturtive notion of "computable” is captured by functions
computer by a luring machine

 [Physical CT Thesis] Any computational problem that can be
solved by any physical process, can be solved by a Turing machine

Hilbert's Challenges: Conclusion

- Hilbert's |0th problem [1900]:

- Given a multivariate polynomial with integer
coefficients, Is there a process that
determines in a finite number of
operations whether the equation Is solvable

- No: Martin Davis, Yuri Matiyasevich, Hilary
Putnam and Julia Robinson [197/0]

- Hilbert's Entscheidungsproblem (Decision problem)
[1928];

* Is there a finite procedure that determines

whether a given mathematical statement is true
or false!

- No: Alan Turing [1936]

Computability and Complexity

Computability of a problem:

Can a problem be solved by a given computational model

Start with restricted models: automaton

Build up to Turing machines (modeling modern computers)
Complexity of a problem:

s there an efficient algorithm to solve it?

Efficiency: time and space complexity

Practice with reductions

Study the hierarchy of these classes

Course Logistics

Textbooks

+ Primary: Introduction to Theory of Computation (3rd ed) by Sipser

- Will follow 1t pretty closely
- Reserved at Schow If you need it
» Supplemental readings:
» Introduction to Theoretical Computer Science by Boaz Barak

» Online: https:/introtcs.org/public/index.html

MICHAEL SIPSER

https://introtcs.org/public/index.html

Course Webpage

Link: https://williams-cs.github.io/cs36 | -F24/index.htm|

Lecture materials, readings and assignments will be posted here

Will occasionally use GLOWV for internal documents

CSCI 361 - Fall 2024

Theory of Computation

Home | Lectures | Assignments | Resources | CS@Williams

Home

Instructor:
Email:

Lectures:
Classroom
Textbook

GLOW page:
Office Hours:

Shikha Singh

ss32@williams.edu

CSCI 361 GLOW

Check the calendar below.

TR 8:30 am - 9:45 am (01) and TR 9:55 am - 11:10 am (02).
Wachenheim 116

Introduction to the Theory of Computation by Michael Sipser (3rd ed)

Course Description

This course introduces a formal framework for investigating both the computability and complexity of problems. We study
several models of computation including finite automata, regular languages, context-free languages, and Turing machines.
These models provide a mathematical basis for the study of computability theory. The class also explores important topics in
complexity theory: hardness of problems and reductions and characterizations of time and space complexity classes.

https://williams-cs.github.io/cs361-f24/index.html

Syllabus and Grade Breakdown

Posted on course webpage

- https://williams-cs.github.io/cs36 | -124/handouts/syllabus.pdf

Grading breakdown:
* Assignments (30 %)
» Attendance, Readings & Class Participation (10 %)

» Survey paper and presentation (10 %)
Midterm Exam (25 %)

Final Exam (25 %)

https://williams-cs.github.io/cs361-f24/handouts/syllabus.pdf

Problem Sets

Problem sets for practicing concepts from class

Must be typeset in LaTeX (using provided template in Overleaf)
Anonymized grading: no name/ID on HWs

Submit via Gradescope (Course 1D: 844447)

Assignments will typically be released on Thursdays and due on VWed

6verleaf

LaTeX, Evolved

Features & Benefits Plans & Pricing Help~ Register Login
he easy to use, online, collaborative LaTeX editor
o Review Wshwe @ Submit D History 9 Chat
h Text c 9D & I
‘ [
Q
The Uniers
Register I
@ 1'd like emails about product offers and company news and events.
or
Register using gle

gradescope

Assisnment |

- Hirst assignment will be released early next week and due Sept |/
(Tues, instead of Wed) because | am traveling Wed Sept | 8-20

- lypically assignments will be due Wed

6verlec:f

LaTeX, Evolved

Features & Benefits Plans & Pricing Help~ Register LogIn
he easy t nline, collaborative LaTeX editor
S 2 o teview W Share @ Sobmit D History @B Cha
LS @ Rich T Re K 7’
& o
&
.
L]
e 5 10 by In w1 Svamiy drsepear e be Pesnend
s o A s
o
Register
® I'dlike e ffers and company news and events.
or
Regist g gl

gradescope

Attendance, Readings & Class Participation

Early morning class!
Incentive to attend and come prepared
Reading HW: brief, pencil and paper question based on reading
Hand in at the beginning of class
Count as attendance (required)
Only graded on completeness

Everyone can miss two-sessions at no penalty

Otherwise, If you need to miss, reach out I'D LIKE —
ahead of time MORNINGS "¢
BETTER _.Lkg;sﬁ \.

, IF THEY i‘
Grab next lectures reading STARTED

assignment on the way out LATER é & ‘

About Class Participation

| like interaction in my classes!

Most lectures will include in-class problem solving
Think of them as mini labs

This is a small classroom
Unusual in CS but great for in-class activities

This can be a great learning experience for you If you help build a good
community In class

- Be a good teammate, come prepared and help each other!

Bottom line. Help create a vibrant, positive, and inclusive classroom environment!

Survey on Advanced lopic

Many fun advanced topics you can explore at the end
Chance to choose one you like with a partner

Learn more about it

Present to your classmates In class

Submit a brief report

- WIll provide options of topics and associated readings

- Think of it as a low stakes mini project:

Provides flexibility for creativity and exploration

Focus I1s on learning rather than building something

Honor Code

Read: academic honesty section of the syllabus
Gist:

Collaboration Is encouraged and you can discuss high-level ideas,
clarifications, examples to understand the question, etc

Should not discuss low-level detalils

Not allowed to search the internet/ChatGPT with question
specific prompts

At best, these take away valuable learning opportunities
At worst, they are confusing and damaging to your learning

You must arrive at on your own and understand the work you submit

Bottom line. Any work that is not your own is a violation of the Honor Code.

Course Support

Instructor Office Hours:

Mon, Tues and Wed: 2.30 - 4 pm

- Iwo TAs: Leah Williams and Nathaniel Tunggal

- 1BD: will be posted on the course webpage soon

Course Outline

- Week |: Background, Sets and Languages

« Week 2-3: Finite Automaton and Regular Languages
- Week 4: Non-regularity and context-free grammars
« Week 5-7: Turing machines and computabilrity

- Week 8-10: Time and Space Complexity, Reductions

« Week | |-12: Advanced topics, student presentations

Zero-knowledge proof 3

s this Stuff Useful!

ypical computer scientist attitude: urgency to "build”

CSCI 361 i1s not about building or coding, but....
Concepts have stood the test of time and led to many Insights
Old paradigm: Good theory informs good practice
» Also, concepts In this course have proved particularly applicable
+ Automaton & Regkx — Scanners, circurt design, cellular automaton
Context-free grammars — Building parsers for compilers
Computability and halting program — Program verification
Formal systems and logic = Foundation of Al and Databases

Complexity Theory — Cryptography and Security

Data Representation

Representing Data

Mathematically modeling input/output?

Input/output can be any object: Input

Images, text, electrical signals, social network, etc I

- What Iis the typical approach in C5?

Specifically binary strings

"Encode” this data into text/strings /\
oo
\ -

\ 4

Output

Encodings

Not specific to CS languages:
» Spoken languages encode objects through words to represent them

Does the choice of alphabet matter?

-+ Alphabet 2~ = a non-empty and finite set made up of symbols

- String s: a finite (possibly empty) sequence of symbols from X

+ § = a,a,-+a, where each a;, € X FAMTLTI S
Binary strings with 2 = {0,1} ﬂé;‘g}i ;%

ABCDE sgugs

FGHIK 983 49

- 01, 000, 1110000---111 L. MN O ;Z‘iz?

PQRST TB® Y H
VXY 7 JgIdad

MY H =7

€ (empty string)

Strings: Definrtions

Length of a string s:

|s| = the number of symbols in s

2* = set of all finite-length sequences over X

Example:

10,1}* = {¢,0,1,00,01,10,11,000,...}

ta}* = {e,a,aa,aaa, ...}

Note: X* is an infinite set, but each string in it has a finite length

Encoding: Definrtion

Given a set A of objects, an encoding is an injective (one-to-one)
function that maps A to 2*

No two objects have the same encoding
Restricting to binary alphabet:

Can encode an alphabet with | 2| = k in binary using [log, k| bits
- This extra factor Is constant wrt size of input
Question. Can we encode everything!

Encodability = Countability (will come back to this)
How do we encode uncountable sets (e.g. R)!

+ Approximation (with some precision)

Takeaway: In theory of compu

‘ation, all

input/output data is a stri

8

- What mathematical object captures this?

Back to Computation

Input and output are strings over an alphabet
Input can be any finite length string Input string
Output Is a finite length string

Now we need to define computation

For every input, there I1s an output

A function f from X% — X%

Question. |s computation just a function?

We need to know how to transform Output string
the Input to the output

Function Problem

Specification of a computational problem
Function problem:
» A function of the form f: X* — X*
» Specifies input, output pairs

» A computer/algorithm solves function problem f
if its input/output behavior matches f

+ Examples:
« Reverse function
« Sort function

* 1sPrime

Input string

Output string

Takeways: Defining Computation

- Computation: manipulation of information/data to solve a problem

- Computational problem: the input/output pairs

- Algorithm: description of how this data is manipulated

Input

Decision Problem

A further convenient restriction on output:

Only consider decision problems

Examples:
Given a grap

Given a num

» A decision problem is a function f: £* — {0, 1}

n, is there a clique of size k?

oer, Is It prime!

- This restriction simplifies the study of computation,

without losing much

Input string

True or False

Languages

Language: any set L of finite-length strings over an alphabet 2
+ Thatis,any set L C X*
Inturtively, a language Is set of words over an alphabet
Fxamples for X = {0, 1}
- L=©
. [= T
- L =1{1,01,001,0001,..., }

+ One-to-one mapping between decision problem f and language L.

» f(s)=1ifandonlyifs €L

Influence of Chomsky

We will study computation through the lens of languages
Influence of linguist Chomsky on computation
A grammars generates a language (akin to speaking)

- Any string in the language can be generated
using the rules of the grammar

A machine recognizes a language (akin to listening)

- | a given input string Is In a language, the machine will
"accept’ (output true), otherwise "reject” (output false)

(

/\

