
CS 361: Theory of Computation
Lecture 1: Introduction & Logistics

Shikha Singh

Introductions

What is Theory of Computation?

What is Computation?

What is Computation

Input

Output

"Computer"

Computers Now

Computers: Early 20th Century

Earliest: Analytic Engine and Note G
Charles Babbage’s Analytic Engine was the first universal computing device ever
designed. It followed his Difference Engine for evaluating polynomial functions in
the 1830s. Both machines were mechanical and were never fully built at the time.
However, sophisticated algorithms were written for it by Babbage and Ada
Lovelace. In particular, Lovelace’s Note G is the first ever published algorithm.

[1843] Lovelace’s Note G computes Bernoulli numbers

Algorithms are Ancient
• Algorithms have been around for thousands of years

• Grade-school multiplication algorithm was invented by Babylonians
• Euclid's GCD algorithm (~300 BC)

How Do We Define an Algorithm?
• What constitutes an algorithm? How do we define it?

• Intuitively, step by step process
• That eventually terminates and produces the desired output

• To design algorithms, this intuitive understanding was sufficient
• Components of an algorithm:

• Specification: What is the task the algorithm performs

• Implementation: How is the task accomplished

• Analysis: Is it correct? Is it efficient?

• Question. Can all problems be solved by some algorithm?

Theory of Computation
• Need a formal model of what it means to solve a problem
• Theory of Computation:

• Building a mathematical model for computation
• Using the model to understand the power and limits of computation
• Gain insights that inform applications

Where it Started: Hilbert's Challenges
• [1900-1930] David Hilbert identifies several mathematical problems

as the challenges for the coming century
• Two of these problems concerned Computer Science

1862 - 1943

Hilbert's 10th Problem
• Hilbert's 10th problem [1900]:

• Given a multivariate polynomial with integer coefficients, is there a
process that determines in a finite number of operations
whether the equation has an integral solution

3x2 − 2xy − y2z − 7 = 0

x = 1,y = 2,z = − 2

x2 + y2 + 1 = 0

Integer solution

No solution

Hilbert's Entscheidungsproblem
• Hilbert believed the answer was yes but many attempts failed
• To show it was not solvable, more formalization was needed of what it

means to use a "finite procedure" to solve a problem
• Hilbert's Entscheidungsproblem (Decision problem) [1928]:

• Is there a finite procedure that determines whether a given
mathematical statement is true or false?

• Hilbert again believed the answer was yes:
• There was no such thing as an unsolvable problem

Attempts to Define Computation
• [1930s: Post, Gödel, Church] attempt to solve Hilbert's

Entscheidungsproblem
• Post machine, lambda calculus, Gödel machine

Kurt GödelEmil Post Alonzo Church

Birth of Computer Science
• [1936] As a graduate student Alan Turing (at age 24)

devised what is now called the Turing machine and used
it to devise an uncomputable problem

• Church and Turing:

• -computable Turing computableλ ≡

Church and Turing Thesis
• Turing machines predates modern computer as we know it, yet there is

no existing physical model that cannot be modeled by it
• Church-Turing Thesis:

• Intuitive notion of "computable" is captured by functions
computer by a Turing machine

• [Physical CT Thesis] Any computational problem that can be
solved by any physical process, can be solved by a Turing machine

Hilbert's Challenges: Conclusion
• Hilbert's 10th problem [1900]:

• Given a multivariate polynomial with integer
coefficients, is there a process that
determines in a finite number of
operations whether the equation is solvable

• No: Martin Davis, Yuri Matiyasevich, Hilary
Putnam and Julia Robinson [1970]

• Hilbert's Entscheidungsproblem (Decision problem)
[1928]:

• Is there a finite procedure that determines
whether a given mathematical statement is true
or false?

• No: Alan Turing [1936]

Computability and Complexity
• Computability of a problem:

• Can a problem be solved by a given computational model
• Start with restricted models: automaton
• Build up to Turing machines (modeling modern computers)

• Complexity of a problem:
• Is there an efficient algorithm to solve it?
• Efficiency: time and space complexity
• Practice with reductions
• Study the hierarchy of these classes

Course Logistics

Textbooks
• Primary: Introduction to Theory of Computation (3rd ed) by Sipser

• Will follow it pretty closely
• Reserved at Schow if you need it

• Supplemental readings:
• Introduction to Theoretical Computer Science by Boaz Barak
• Online: https://introtcs.org/public/index.html

https://introtcs.org/public/index.html

Course Webpage
• Link: https://williams-cs.github.io/cs361-f24/index.html
• Lecture materials, readings and assignments will be posted here
• Will occasionally use GLOW for internal documents

https://williams-cs.github.io/cs361-f24/index.html

Syllabus and Grade Breakdown
• Posted on course webpage

• https://williams-cs.github.io/cs361-f24/handouts/syllabus.pdf
• Grading breakdown:

• Assignments (30 %)
• Attendance, Readings & Class Participation (10 %)
• Survey paper and presentation (10 %)
• Midterm Exam (25 %)
• Final Exam (25 %)

https://williams-cs.github.io/cs361-f24/handouts/syllabus.pdf

Problem Sets
• Problem sets for practicing concepts from class
• Must be typeset in LaTeX (using provided template in Overleaf)
• Anonymized grading: no name/ID on HWs

• Submit via Gradescope (Course ID: 844447)
• Assignments will typically be released on Thursdays and due on Wed

Assignment 1
• First assignment will be released early next week and due Sept 17

(Tues, instead of Wed) because I am traveling Wed Sept 18-20
• Typically assignments will be due Wed

Attendance, Readings & Class Participation
• Early morning class!
• Incentive to attend and come prepared

• Reading HW: brief, pencil and paper question based on reading
• Hand in at the beginning of class
• Count as attendance (required)
• Only graded on completeness

• Everyone can miss two-sessions at no penalty
• Otherwise, if you need to miss, reach out

ahead of time

Grab next lectures reading
assignment on the way out!

About Class Participation
• I like interaction in my classes!
• Most lectures will include in-class problem solving

• Think of them as mini labs
• This is a small classroom

• Unusual in CS but great for in-class activities
• This can be a great learning experience for you if you help build a good

community in class
• Be a good teammate, come prepared and help each other!

Bottom line. Help create a vibrant, positive, and inclusive classroom environment!

Survey on Advanced Topic
• Many fun advanced topics you can explore at the end
• Chance to choose one you like with a partner

• Learn more about it
• Present to your classmates in class
• Submit a brief report

• Will provide options of topics and associated readings
• Think of it as a low stakes mini project:

• Provides flexibility for creativity and exploration
• Focus is on learning rather than building something

Honor Code
• Read: academic honesty section of the syllabus
• Gist:

• Collaboration is encouraged and you can discuss high-level ideas,
clarifications, examples to understand the question, etc

• Should not discuss low-level details
• Not allowed to search the internet/ChatGPT with question

specific prompts
• At best, these take away valuable learning opportunities
• At worst, they are confusing and damaging to your learning

• You must arrive at on your own and understand the work you submit

Bottom line. Any work that is not your own is a violation of the Honor Code.

Course Support
• Instructor Office Hours:

• Mon, Tues and Wed: 2.30 - 4 pm
• Two TAs: Leah Williams and Nathaniel Tunggal

• TBD: will be posted on the course webpage soon

 Course Outline
• Week 1: Background, Sets and Languages
• Week 2-3: Finite Automaton and Regular Languages
• Week 4: Non-regularity and context-free grammars
• Week 5-7: Turing machines and computability
• Week 8-10: Time and Space Complexity, Reductions
• Week 11-12: Advanced topics, student presentations

Is this Stuff Useful?
• Typical computer scientist attitude: urgency to "build"
• CSCI 361 is not about building or coding, but....

• Concepts have stood the test of time and led to many insights
• Old paradigm: Good theory informs good practice

• Also, concepts in this course have proved particularly applicable

• Automaton & RegEx Scanners, circuit design, cellular automaton

• Context-free grammars Building parsers for compilers

• Computability and halting program Program verification

• Formal systems and logic Foundation of AI and Databases

• Complexity Theory Cryptography and Security

→

→

→

→

→

Data Representation

Representing Data
• Mathematically modeling input/output?
• Input/output can be any object:

• Images, text, electrical signals, social network, etc
• What is the typical approach in CS?

• "Encode" this data into text/strings
• Specifically binary strings

Input

Output

Encodings
• Not specific to CS languages:

• Spoken languages encode objects through words to represent them
• Does the choice of alphabet matter?

• Alphabet = a non-empty and finite set made up of symbols

• String : a finite (possibly empty) sequence of symbols from

• where each

• Binary strings with

• (empty string)

•

Σ

s Σ

s = a1a2⋯an ai ∈ Σ

Σ = {0,1}

ϵ

01, 000, 1110000⋯111

Strings: Definitions
• Length of a string :

 the number of symbols in

• set of all finite-length sequences over
• Example:

•

•

• Note: is an infinite set, but each string in it has a finite length

s

|s | = s

Σ* = Σ

{0,1}* = {ϵ,0,1,00,01,10,11,000,…}

{a}* = {ϵ, a, aa, aaa, …}

Σ*

Encoding: Definition
• Given a set of objects, an encoding is an injective (one-to-one)

function that maps to
• No two objects have the same encoding

• Restricting to binary alphabet:

• Can encode an alphabet with in binary using bits

• This extra factor is constant wrt size of input
• Question. Can we encode everything?

• Encodability = Countability (will come back to this)

• How do we encode uncountable sets (e.g.)?
• Approximation (with some precision)

A
A Σ*

|Σ | = k ⌈log2 k⌉

ℝ

Takeaway: In theory of computation, all
input/output data is a string

Back to Computation
• Input and output are strings over an alphabet

• Input can be any finite length string
• Output is a finite length string

• Now we need to define computation
• For every input, there is an output

• What mathematical object captures this?

• A function from

• Question. Is computation just a function?

• We need to know how to transform
the input to the output

f Σ* → Σ*

Input string

Output string

Function Problem
• Specification of a computational problem
• Function problem:

• A function of the form
• Specifies input, output pairs

• A computer/algorithm solves function problem
if its input/output behavior matches

• Examples:
• Reverse function
• Sort function
• isPrime

f : Σ* → Σ*

f
f

Input string

Output string

Takeways: Defining Computation
• Computation: manipulation of information/data to solve a problem

• Computational problem: the input/output pairs

• Algorithm: description of how this data is manipulated

Input

Output

Decision Problem
• A further convenient restriction on output:

• Only consider decision problems

• A decision problem is a function
• Examples:

• Given a graph, is there a clique of size ?
• Given a number, is it prime?

• This restriction simplifies the study of computation,
without losing much

f : Σ* → {0, 1}

k

Input string

True or False

Languages
• Language: any set of finite-length strings over an alphabet

• That is, any set
• Intuitively, a language is set of words over an alphabet

• Examples for

•

•

•

• One-to-one mapping between decision problem and language :

• if and only if

L Σ

L ⊆ Σ*

Σ = {0, 1}

L = ∅

L = Σ*

L = {1,01,001,0001,…, }

f L

f(s) = 1 s ∈ L

Influence of Chomsky
• We will study computation through the lens of languages
• Influence of linguist Chomsky on computation
• A grammars generates a language (akin to speaking)

• Any string in the language can be generated
using the rules of the grammar

• A machine recognizes a language (akin to listening)
• If a given input string is in a language, the machine will

"accept" (output true), otherwise "reject" (output false)

