CS 361: Theory of Computation

Finals Study Guide

Instructors: Shikha Singh

Languages

e An alphabet ¥ is a finite set of symbols.

e Set of all finite strings over an alphabet 3 is denoted >*.

e A language L is a subset of ¥*.

e An empty string is a string containing no symbols and is denoted as €.

e (Operations on Languages) Let L; and L, be two languages over the alphabet X.

— Union. LyULy={x|x € Ly orxe Ly}

— Intersection. Ly N Ly ={z | x € Ly and x € Ly}
— Complement. Ly = {z € X* | v ¢ L}

— Concatenation. Lyo Ly ={xoy |z € L,y € Ly}

Kleene star. L1* = {x10x90---0omxy | k> 0,21,29,..., 25 € L1}
Countability and Languages

e A function f is a bijection if it is both one-one and onto.

e An infinite set A is countable if there exists a bijection f: A — N.
o All finite sets are countable.

e The set X*, is countable.

e The set of all languages over ¥ (that is, the power set of ¥*) is uncountable.

Regular Languages

e A Deterministic Finite Automaton (DFA) is a 5-tuple (Q, 3,0, qo, F'), where @ is a
finite set of states, X is the alphabet, § :) x ¥ — (@ is the transition function, ¢y is the
start state, and F' is the set of accept states. A DFA accepts a string w = wyws ... w,
if there exists a sequence of states starting with ro = ¢y and ending with r, € F' such
that Vi, 0 < ¢ < n, §(r;,w;) = r;iy1. The language of a DFA M, denoted L(M) is
exactly equal to the set of strings that M accepts.

1

Finals Study Guide 2

A language is regular if there is a deterministic finite automaton that recognizes it.

(Closure properties of regular languages.) The class of regular languages are
closed under union, concatenation, reverse, complement and Kleene star operations.

A non-deterministic finite automaton (NFA) is a 5-tuple (Q, 3, 9, qo, F'), where @ is a
finite set of states, X is the alphabet, 6 : Q@ x X, — P(Q) is the transition function, gy is
the start state, and F' is the set of accept states. A non-deterministic finite automaton
accepts a string w = w; ... w, if there exists a sequence of states rg,...r, such that
To = qo, Tn € Fand Vi, 0 <@ <mn, ripq € 6(r;, w;).

For every NFA there is a DFA recognizing the same language.

Regular expressions are built recursively starting from (), ¢ and symbols from Y and
closure under union (R; U Rs), concatenation (R; o Ry) and Kleene Star (R*).

A language is recognized by a DFA if and only if (iff) it is generated by some regular
expression.

All finite languages are regular.

(Pumping Lemma). For every regular language L there is a pumping length p such
that Yw € L, if |w| > p then w = zyz such that the following holds:

- |l’y| <p,
B |y| >0, and7
— Vi >0, zy'z € L.

(Myhill-Nerode.) Let L be a language over the alphabet 3.

— Two strings x and y are indistinguishable with respect to L, denoted x =y, y, if for
any z € X*, xz € L if and only if yz € L.

— The equivalence relation =, partitions X* into equivalence classes, where each equiv-
alence class, denoted [z], is the set of all strings that are indistinguishable, i.e.,
[z] = {w e ¥* | w= z}.

— If the relation =5, over ¥* has k equivalence classes, then every DFA for L must
have at least k states.

— L is regular iff the relation =y over ¥* has a finite number of equivalence classes.

Classic examples of non-regular languages are {a"b" | n > 0} and {ww® | w € {0,1}*}.

Nonregularity of a language can be proved using either the pumping lemma or the
Myhill Nerode theorem.

Finals Study Guide 3

Context-free Languages

A context-free grammar (CFG) is a 4-tuple (V, %, R,S), where V' is a finite set of
variables, with S € V' the start variable, 3 is a finite set of terminals (disjoint from the
set of variables), and R is a finite set of rules, with each rule consisting of a variable
followed by — followed by a string of variables and terminals.

Let A — w be a rule of the grammar, where w is a string of variables and terminals.
Then A can be replaced in another rule by w, that is, uAv in a body of another rule
can be replaced by uwv (we say uwAv yields uwv, denoted wAv = uwv). If there is a
sequence u = Ui, Us,...u, = v such that for all i, 1 < i < k, u; = wu;y; then we say
that u derives v (denoted u = v.)

If G is a context-free grammar, then the language of G is the set of all strings of
terminals that can be generated from the start variable: L(G) = {w € ¥* | S = w}.

A parse tree of a string is a tree representation of a sequence of derivations; it is
leftmost if at every step the first variable from the left was substituted.

A grammar is called ambiguous if there is a string in a grammar with two different
(leftmost) parse trees.

A language is a context-free language (CFL) is a context-free grammar generates it.

A pushdown automaton (PDA) is an NFA with a infinite stack. More formally, it is a
6-tuple (Q, >, 1,6, qo, F') where @ is the set of states, ¥ is the input alphabet, I is the
stack alphabet, ¢y is the start state, F' is the set of accept states and the transition
function § : Q x 3. x T'e = P(Q x T).

A language is context-free if and only if some (non-deterministic) pushdown automaton
recognizes it.

Deterministic PDAs are not equivalent to non-deterministic PDAs.

(Closure properties of context-free languages.)

— Context-free languages are closed under union, Kleene star and concatenation.

— Context-free languages are not closed under intersection and complement.

The intersection of a CFL and a regular language is context-free.

Even though we have not proved this in class, you can see why this is true by con-
structing a new PDA P’, given the PDA P of the CFL, and a DFA M of the reqular
language. P’ can simulate both P and M simultaneously and accept if both accept.
Note that the stack of P’ is the stack of P. The state of P’ at any time is the pair
(state of P, state of M). The transition function of P" follows both the transitions of
P and M wusing its states and stack. The accept states of P’ are those in which both
the state of P and state of M are accepting.

Classic non-context-free languages: L = {a"b"c¢" | n € N} and L = {ww | w € {0,1}*}.

Finals Study Guide 4

Turing Decidable and Recognizable Languages

A Turing machine is a finite state machine with an infinite memory (tape). Formally,
a Turing machine is a 6-tuple M = (Q, %, T, 4, qo, daccept qreject)' Here, @ is a finite
set of states as before, with three special states gy (start state), Gaccept and reject-
The last two are called the halting states, and they cannot be equal. ¥ a finite input
alphabet. I' is a tape alphabet which includes all symbols from > and a special symbol
for blank LI. Finally, the transition function is § : @ x I' = @ x I' x {L, R} where L,
R mean move left or right one step on the tape.

A Turing machine M accepts a string w (informally) if there is a sequence of configu-
rations starting from gow and ending in a configuration containing daccept with every
configuration in the sequence resulting from a previous one by a transition in ¢ of M.
A Turing machine M recognizes a language L if M accepts z iff x € L.

Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-
way infinite tape, multi-tape, and non-deterministic Turing machine.

Any Turing machine can be encoded as a string over some alphabet ¥. Thus, the set
of all Turing machines is infinitely countable.

Church-Turing Thesis states that anything computable by an algorithm of any kind
(our intuitive notion of algorithm) is computable by a Turing machine.

A language L is Turing-recognizable (or recursively enumerable) if there is a Turing
machine M such that M accepts x iff x € L. M may reject or loop on any = ¢ L.

A language L is called decidable (or recursive) if there is a TM M such that M accepts
x iff x € L and M rejects x if and only if « ¢ L, i.e., M halts on all inputs.

(Closure properties of Decidable Languages.) Decidable languages are closed
under intersection, union, complementation, and Kleene star.

If both L and L are Turing recognizable, then L is decidable.
Decidable language examples: ADFA; ANFA; AREX7 EDFA; EQDFA; ALLDF/_\, ACFg, and ECFG-

We proved Aty is undecidability using proof by diagonalization. We used this to prove
that Aty is not Turing recognizable.

A function f is computable if there is a Turing machine that on input w halts with
the description of f(w) on its tape.

There is a mapping reduction from A to B, written A <,, B if exists a computable
function f:3* — ¥* such that v € A <— f(z) € B.

To prove that B is undecidable, pick A which is undecidable and show that A <,,, B.

Undecidable language examples: Atyv, HALTtm, Erm, EQTm, EQcrg, and ALLcrg.

Finals Study Guide 5

Complexity Theory

A Turing machine M runs in time ¢(n) if for any input of length n the number of steps
of M is at most ¢(n).

We say f(n) = O(g(n)) if there exists positive integers ¢ and ng such that f(n) < ¢(g(n)
for every n > ng. We say f(n) = o(g(n)) if lim,_, % = 0.

A language L is in the class P if there is a deternimistic Turing machine that decides
L in polynomial time (that is, time O(n*) for some constant k).

A language L is in the class NP if there is a non-deternimistic Turing machine that
decides L in polynomial time (that is, time O(n*) for some constant k). Alternatively,
L is in the class NP if there exists a polynomial-time verifier for it, that is, a polynomial-
time TM V' that given w and a certificate ¢, decides if w € L using c.

Examples of languages in P: all regular and context-free languages, checking if a path
exists in a graph, if a graph is connected, a number is composite, etc.

Examples of languages in NP: all languages in P, Clique, Hamiltonian Path, SAT, etc.
Major Open Problem: is P = NP?
What we know: P C NP C EXPTIME and P C EXPTIME.

A is polynomial-time reducible to B, written A <, B if there exists a polynomial-time
computable function f :X* — 3* such that w € A < f(w) € B.

A language L is NP-hard if every language in NP reduces to L in polynomial time.
A language is NP-complete it is both in NP and NP-hard.

Cook-Levin Theorem states that SAT is NP-complete. The proof of this theorem can
also be used to show that 3SAT is NP-complete.

Examples of NP-complete problems we discussed (along with the reduction used):

— 3SAT <, CLIQUE

— CLIQUE <, VertexCover

— VertexCover <, IndSet

— 3SAT <, HAMPATH (directed)

— HAMPATH <, UHAMPATH (proof in book)
— UHAMPATH <, UHAMCYCLE

— UHAMCYCLE <, TSP

— 3SAT <, SUBSETSUM (proof not discussed)

