
CS 361: Theory of Computation

Finals Study Guide

Instructors: Shikha Singh

Languages

• An alphabet Σ is a finite set of symbols.

• Set of all finite strings over an alphabet Σ is denoted Σ∗.

• A language L is a subset of Σ∗.

• An empty string is a string containing no symbols and is denoted as ε.

• (Operations on Languages) Let L1 and L2 be two languages over the alphabet Σ.

– Union. L1 ∪ L2 = {x | x ∈ L1 or x ∈ L2}
– Intersection. L1 ∩ L2 = {x | x ∈ L1 and x ∈ L2}
– Complement. L1 = {x ∈ Σ∗ | x /∈ L1}
– Concatenation. L1 ◦ L2 = {x ◦ y | x ∈ L1, y ∈ L2}
– Kleene star. L1

∗ = {x1 ◦ x2 ◦ · · · ◦ xk | k ≥ 0, x1, x2, . . . , xk ∈ L1}

Countability and Languages

• A function f is a bijection if it is both one-one and onto.

• An infinite set A is countable if there exists a bijection f : A→ N.

• All finite sets are countable.

• The set Σ∗, is countable.

• The set of all languages over Σ (that is, the power set of Σ∗) is uncountable.

Regular Languages

• A Deterministic Finite Automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q is a
finite set of states, Σ is the alphabet, δ : Q×Σ→ Q is the transition function, q0 is the
start state, and F is the set of accept states. A DFA accepts a string w = w1w2 . . . wn

if there exists a sequence of states starting with r0 = q0 and ending with rn ∈ F such
that ∀i, 0 ≤ i < n, δ(ri, wi) = ri+1. The language of a DFA M , denoted L(M) is
exactly equal to the set of strings that M accepts.

1

Finals Study Guide 2

• A language is regular if there is a deterministic finite automaton that recognizes it.

• (Closure properties of regular languages.) The class of regular languages are
closed under union, concatenation, reverse, complement and Kleene star operations.

• A non-deterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q is a
finite set of states, Σ is the alphabet, δ : Q×Σε → P(Q) is the transition function, q0 is
the start state, and F is the set of accept states. A non-deterministic finite automaton
accepts a string w = w1 . . . wn if there exists a sequence of states r0, . . . rn such that
r0 = q0, rn ∈ F and ∀i, 0 ≤ i < n, ri+1 ∈ δ(ri, wi).

• For every NFA there is a DFA recognizing the same language.

• Regular expressions are built recursively starting from ∅, ε and symbols from Σ and
closure under union (R1 ∪R2), concatenation (R1 ◦R2) and Kleene Star (R∗).

• A language is recognized by a DFA if and only if (iff) it is generated by some regular
expression.

• All finite languages are regular.

• (Pumping Lemma). For every regular language L there is a pumping length p such
that ∀w ∈ L, if |w| ≥ p then w = xyz such that the following holds:

– |xy| ≤ p,

– |y| > 0, and,

– ∀i ≥ 0, xyiz ∈ L.

• (Myhill-Nerode.) Let L be a language over the alphabet Σ.

– Two strings x and y are indistinguishable with respect to L, denoted x ≡L y, if for
any z ∈ Σ∗, xz ∈ L if and only if yz ∈ L.

– The equivalence relation ≡L partitions Σ∗ into equivalence classes, where each equiv-
alence class, denoted [x], is the set of all strings that are indistinguishable, i.e.,
[x] = {w ∈ Σ∗ | w ≡L x}.

– If the relation ≡L over Σ∗ has k equivalence classes, then every DFA for L must
have at least k states.

– L is regular iff the relation ≡L over Σ∗ has a finite number of equivalence classes.

• Classic examples of non-regular languages are {anbn | n ≥ 0} and {wwR | w ∈ {0, 1}∗}.

• Nonregularity of a language can be proved using either the pumping lemma or the
Myhill Nerode theorem.

Finals Study Guide 3

Context-free Languages

• A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where V is a finite set of
variables, with S ∈ V the start variable, Σ is a finite set of terminals (disjoint from the
set of variables), and R is a finite set of rules, with each rule consisting of a variable
followed by → followed by a string of variables and terminals.

• Let A → w be a rule of the grammar, where w is a string of variables and terminals.
Then A can be replaced in another rule by w, that is, uAv in a body of another rule
can be replaced by uwv (we say uAv yields uwv, denoted uAv ⇒ uwv). If there is a
sequence u = u1, u2, . . . uk = v such that for all i, 1 ≤ i < k, ui ⇒ ui+1 then we say
that u derives v (denoted u

∗
=⇒ v.)

• If G is a context-free grammar, then the language of G is the set of all strings of
terminals that can be generated from the start variable: L(G) = {w ∈ Σ∗ | S ∗

=⇒ w}.

• A parse tree of a string is a tree representation of a sequence of derivations; it is
leftmost if at every step the first variable from the left was substituted.

• A grammar is called ambiguous if there is a string in a grammar with two different
(leftmost) parse trees.

• A language is a context-free language (CFL) is a context-free grammar generates it.

• A pushdown automaton (PDA) is an NFA with a infinite stack. More formally, it is a
6-tuple (Q,Σ,Γ, δ, q0, F) where Q is the set of states, Σ is the input alphabet, Γ is the
stack alphabet, q0 is the start state, F is the set of accept states and the transition
function δ : Q× Σε × Γε → P(Q× Γε).

• A language is context-free if and only if some (non-deterministic) pushdown automaton
recognizes it.

• Deterministic PDAs are not equivalent to non-deterministic PDAs.

• (Closure properties of context-free languages.)

– Context-free languages are closed under union, Kleene star and concatenation.

– Context-free languages are not closed under intersection and complement.

• The intersection of a CFL and a regular language is context-free.
Even though we have not proved this in class, you can see why this is true by con-
structing a new PDA P ′, given the PDA P of the CFL, and a DFA M of the regular
language. P ′ can simulate both P and M simultaneously and accept if both accept.
Note that the stack of P ′ is the stack of P . The state of P ′ at any time is the pair
(state of P , state of M). The transition function of P ′ follows both the transitions of
P and M using its states and stack. The accept states of P ′ are those in which both
the state of P and state of M are accepting.

• Classic non-context-free languages: L = {anbncn | n ∈ N} and L = {ww | w ∈ {0, 1}∗}.

Finals Study Guide 4

Turing Decidable and Recognizable Languages

• A Turing machine is a finite state machine with an infinite memory (tape). Formally,
a Turing machine is a 6-tuple M = (Q,Σ,Γ, δ, q0, qaccept, qreject). Here, Q is a finite

set of states as before, with three special states q0 (start state), qaccept and qreject.
The last two are called the halting states, and they cannot be equal. Σ a finite input
alphabet. Γ is a tape alphabet which includes all symbols from Σ and a special symbol
for blank t. Finally, the transition function is δ : Q × Γ → Q × Γ × {L,R} where L,
R mean move left or right one step on the tape.

• A Turing machine M accepts a string w (informally) if there is a sequence of configu-
rations starting from q0w and ending in a configuration containing qaccept, with every
configuration in the sequence resulting from a previous one by a transition in δ of M .
A Turing machine M recognizes a language L if M accepts x iff x ∈ L.

• Equivalent (not necessarily efficiently) variants of Turing machines: two-way vs. one-
way infinite tape, multi-tape, and non-deterministic Turing machine.

• Any Turing machine can be encoded as a string over some alphabet Σ. Thus, the set
of all Turing machines is infinitely countable.

• Church-Turing Thesis states that anything computable by an algorithm of any kind
(our intuitive notion of algorithm) is computable by a Turing machine.

• A language L is Turing-recognizable (or recursively enumerable) if there is a Turing
machine M such that M accepts x iff x ∈ L. M may reject or loop on any x /∈ L.

• A language L is called decidable (or recursive) if there is a TM M such that M accepts
x iff x ∈ L and M rejects x if and only if x /∈ L, i.e., M halts on all inputs.

• (Closure properties of Decidable Languages.) Decidable languages are closed
under intersection, union, complementation, and Kleene star.

• If both L and L are Turing recognizable, then L is decidable.

• Decidable language examples: ADFA, ANFA, AREX, EDFA, EQDFA, ALLDFA, ACFG, and ECFG.

• We proved ATM is undecidability using proof by diagonalization. We used this to prove
that ATM is not Turing recognizable.

• A function f is computable if there is a Turing machine that on input w halts with
the description of f(w) on its tape.

• There is a mapping reduction from A to B, written A ≤m B if exists a computable
function f : Σ∗ → Σ∗, such that x ∈ A ⇐⇒ f(x) ∈ B.

• To prove that B is undecidable, pick A which is undecidable and show that A ≤m B.

• Undecidable language examples: ATM, HALTTM, ETM, EQTM, EQCFG, and ALLCFG.

Finals Study Guide 5

Complexity Theory

• A Turing machine M runs in time t(n) if for any input of length n the number of steps
of M is at most t(n).

• We say f(n) = O(g(n)) if there exists positive integers c and n0 such that f(n) ≤ c(g(n)

for every n ≥ n0. We say f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0.

• A language L is in the class P if there is a deternimistic Turing machine that decides
L in polynomial time (that is, time O(nk) for some constant k).

• A language L is in the class NP if there is a non-deternimistic Turing machine that
decides L in polynomial time (that is, time O(nk) for some constant k). Alternatively,
L is in the class NP if there exists a polynomial-time verifier for it, that is, a polynomial-
time TM V that given w and a certificate c, decides if w ∈ L using c.

• Examples of languages in P: all regular and context-free languages, checking if a path
exists in a graph, if a graph is connected, a number is composite, etc.

• Examples of languages in NP: all languages in P , Clique, Hamiltonian Path, SAT, etc.

• Major Open Problem: is P = NP?

• What we know: P ⊆ NP ⊆ EXPTIME and P (EXPTIME.

• A is polynomial-time reducible to B, written A ≤p B if there exists a polynomial-time
computable function f : Σ∗ → Σ∗ such that w ∈ A ⇐⇒ f(w) ∈ B.

• A language L is NP-hard if every language in NP reduces to L in polynomial time.

• A language is NP-complete it is both in NP and NP-hard.

• Cook-Levin Theorem states that SAT is NP-complete. The proof of this theorem can
also be used to show that 3SAT is NP-complete.

• Examples of NP-complete problems we discussed (along with the reduction used):

– 3SAT ≤p CLIQUE

– CLIQUE ≤p VertexCover

– VertexCover ≤p IndSet

– 3SAT ≤p HAMPATH (directed)

– HAMPATH ≤p UHAMPATH (proof in book)

– UHAMPATH ≤p UHAMCYCLE

– UHAMCYCLE ≤p TSP

– 3SAT ≤p SUBSETSUM (proof not discussed)

