
CS 361: Lecture 3 Handout

Shikha Singh

1 Closure Properties of Regular Languages

We say that a set is closed under some unary operation if by applying this operation to
elements of the given set, the result is an element also contained in that set. Closure under
binary operations is defined analogously.

For example, consider the set of natural numbers N, and consider the binary operations
addition and division. The natural numbers are closed under addition, because if a, b ∈ N,
then a+ b ∈ N. On the other hand, natural numbers are NOT closed under division since if
we take 1, 2 ∈ N, then 1

2
6∈ N.

When talking about regular languages, the same principle holds. We next discuss for
which operations the set of regular languages are closed under.

Theorem 1. Regular languages are closed under complement.

Proof. First note that the complement of a language is the complement with respect to some
alphabet. So if Σ is the alphabet of language L, then L = Σ∗ − L, i.e., all the strings over
the alphabet Σ that are not in L.

Now let L be an arbitrary regular language. We want to show that L is also a regular
language, that is, we need to show that there exists a finite automaton that recognizes L.

By the definition of a regular language, there exists a finite automatonM = (Q,Σ, q0, δ, F )
such that L = L(M). Consider the automaton defined by M = (Q,Σ, q0, δ, Q − F ). The
new automaton M is almost the same as M , differing only on the set of accept states.

We claim that L(M) = L. We prove this by showing that L ⊆ L(M) and L(M) ⊆ L.
Consider an input string w ∈ L. As w ∈ L, we know that w /∈ L. Since L(M) = L, we

know that M does not accept w. That is, there exists a computation of M starting in q0
and ending in some state q ∈ Q − F . Since M has the same states and transition function
as M , but with final states Q− F , we can conclude that M accepts w. Thus, L ⊆ L(M).

Now consider an input string w ∈ L(M), that is, M accepts w. Then there exists a
computation of M starting in q0 and ending in some state q ∈ Q−F . Since M has the same
states and transition function as M , and q 6∈ F , we can conclude that M does not accept w,
or w 6∈ L(M) = L which means that w ∈ L. Thus, L(M) ⊆ L.

Theorem 2. Regular languages are closed under intersection and union.

Proof. We want to show that if L1, L2 are regular languages, then so are L1 ∩ L2 and L1 ∪
L2. By definition, we know there are finite automata M1 = (Q,Σ, δ1, q0, F1) and M2 =
(S,Σ, δ2, s0, F2) such that L1 = L(M1) and L2 = L(M2). Note that we are assuming that

1



both languages have the same alphabet because if they were different, then we could consider
Σ as their union.

To show that L1 ∩ L2 is a regular language, we want to define an automaton that will
simulate both M1 and M2 in parallel, and accept a string w if both automata accept w. To
show that L1 ∪L2 is a regular language, we similarly want to define an automaton that will
simulate both M1 and M2 in parallel and accept a string w if either automata accept w.

The states of the new machines Q will thus be pairs of states from M1 and M2, more
precisely Q = Q× S. The alphabet remains the same and we consider the start state as the
pair (q0, s0), since both simulations must start in their respective start state.

The transition function δ of the new machines are defined considering what M1 and M2

would do. Given a pair of states (q, s) and a symbol a ∈ Σ, the transitions in the new
machine should follow what M1 does with a from state q (that is, δ1(q, a)), and what M2

does with a and state s (that is, δ2(s, a)). Formally, δ((q, s), a) = (δ1(q, a), δ2(s, a)).
Finally, the set of accept states of the new machines are defined by the pair of accept

states in M1 and M2. We consider the final states for intersection and union separately.

Intersection. For the language L∩ = L1∩L2, we define the finite automata that recognizes
L∩ as M∩ = (Q× S,Σ, δ, (q0, s0), F∩), where F∩ = {(qf , sf ) | qf ∈ F1 and sf ∈ F2}.

To prove that L(M∩) = L∩, we again have two cases.
First, consider a string w ∈ L∩ = L1 ∩ L2. Since w ∈ L1 = L(M1) and w ∈ L2 = L(M2),

we know there exists computations in M1 and M2 that start in states q0, s0 respectively and
end in accept states qf , sf respectively where qf ∈ F1 and sf ∈ F2. By construction of M∩,
we know there is a corresponding computation of M∩ on w that starts in (q0, s0), follows the
transitions defined by δ and ends in (qf , sf ) ∈ F∩. This means that M∩ accepts w, that is,
w ∈ L(M∩). Thus, L∩ ⊆ L(M∩).

Second, consider a string w that is accepted by M∩. There must be a computation of
M∩ that starts in (q0, s0) and ends in (qf , sf ) ∈ F∩. This computation is a sequence of pairs
of states that agree with δ, so if we consider a sequence formed by the first argument of
each pair and another sequence formed by the second argument of each pair, we obtain two
computations, one for M1 and one for M2. Since each computation ends in a accept state, we
know that both M1 and M2 accept w, so w ∈ L(M1)∩L(M2) = L1∩L2. Thus, L(M∩) ⊆ L∩.

Together we have proved that L∩ = L(M∩), that is, M∩ correctly recognizes the language
L1 ∩ L2 and thus it is a regular language.

Union. To show that L1∪L2 is also regular, we use almost the same construction as before,
differing only on the set of final states. For the language L∪ = L1 ∪ L2, we define the finite
automata that recognizes L∪ as M∪ = (Q× S,Σ, δ, (q0, s0), F∪), where F∪ = {(qf , sf ) | qf ∈
F1 or sf ∈ F2}. The final states are defined using an “or” because for a string to be in the
union we just need that at least one of the machines M1 or M2 accept it.

The proof that L∪ = L(M∪) is similar to the case of intersection.

2


	Closure Properties of Regular Languages

