
CS 361: Lecture 2 Handout

Shikha Singh

1 Proof by Construction

Theorem 1. The set of integers Z is countable.

Proof. To prove that Z is countable, we need to show that there exists a function f(x) : Z →
N that is a bijection. We constructed the following function f : Z → N in class.

f(x) =

{
2x if x > 0
−2x+ 1 if x ≤ 0

We convinced ourselves that this function is bijective in class using a combination of
“laser vision”, “pattern matching”, and “proof by picture”. While that is great for intuition,
we need to also learn how to prove it formally using math. We do that now.

To prove that f(x) is a bijection, we need to show that f(x) is one-one and onto.

One-one: To prove that f(x) is one-one, we need to show that if f(x1) = f(x2) then
x1 = x2. We have several cases depending on whether x1 and x2 are positive or not.

Case 1. x1 > 0 and x2 > 0 then if

f(x1) = f(x2)

2x1 = 2x2

x1 = x2

Case 2. x1 ≤ 0 and x2 ≤ 0 then if

f(x1) = f(x2)

−2x1 + 1 = −2x2 + 1

x1 = x2

Case 3. x1 > 0 and x2 ≤ 0 then if

f(x1) = f(x2)

2x1 = −2x2 + 1

x1 + x2 = 1/2

This case can never happen because x1 and x2 are integers and their sum cannot be a fraction.
Thus in this case, the “if” part is false, so we do not need to prove the “then” part. The
same happens when we try out the fourth case where x1 ≤ 0 and x2 > 0, we find out that
we can never have a case that f(x1) = f(x2) for any x1 and x2 in this case.
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Onto: To prove that f(x) is onto, we have to prove that for every y ∈ N, there is an x ∈ Z
such that f(x) = y. We pick an arbitrary natural number y and divide this into two cases.

Case 1. y is an even natural number. Then y = 2k for some natural number k (this is
the definition of an even number). Then x = k is a positive integer that maps to y, that is,
f(x) = 2k = y.

Case 2. y is an odd natural number. Then y = 2k + 1 for some natural number k (this
is the definition of an odd number). Then x = −k is a negative integer that maps to y, that
is, f(x) = (−2)(−k) + 1 = 2k + 1 = y.

Since f(x) is one-one and onto, it is a bijection.

2 Proof by Induction

Even though we did not cover this in class, here is an example of a proof by induction.

Theorem 2. A set of n elements has n(n−1)
2

subsets of size 2.

In other words, we want to prove that if we have n elements, we can make n(n − 1)/2
pairs using these elements. We prove this by induction on the size of the set.

Proof. Base case. For a set of size n = 1, we can make n(n − 1)/2 = 0 pairs which proves
the base case.

Induction hypothesis. Assume that for any set of size n = k, we can make n(n−1)
2

= k(k−1)
2

pairs using its elements.
Inductive step. Consider a set of size n = k + 1. We need to show that we can make

n(n−1)
2

= (k+1)k
2

pairs using its elements using the hypothesis.
There are two ways of selecting pairs from k+1 elements: either we select all pairs from

the first k elements or we select one element from the first k elements and pair it with the
(k + 1)th element. From the inductive hypothesis, we know that we can make k(k−1)

2
pairs

out of the first k elements. And there are only k ways to pair one element from the first k
elements with the (k + 1)th element. Thus overall, we can make k(k−1)

2
+ k = k(k+1)

2
pairs

from the k + 1 elements which concludes the proof.

3 Proof by Contradiction: Cantor’s Diagonalization

Theorem 3. The power set P(N) of natural numbers N is not countable.

Proof. When you have to prove a negative statement, such as this or in general prove that a
statement X is false, it may be helpful to think about proof by contradiction first. In proof
by contradiction, you start by assuming that the statement X is true and find an absurdity
or a “contradiction”, which is a conclusion that violates one of your primary assumptions.

Here, let us assume that the power set P(N) is countable. If P(N) is countable, then by
definition, there must exists a function f : P(N) → N that is a bijection. This means that
each subset S ∈ P(N) can be mapped to a natural number j ∈ N, that is, f(S) = j or in
other words, this means that the subsets of N can be enumerated as a list (Sf(S))S∈P(N) =
S1, S2, S3, . . . , so that every subset is Sj for some j ∈ N.
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Consider the set D = {i ∈ N | i ∈ Si}. This set can be pictorially represented as the
diagonal (blue cells) in the following table where a “Y” in a cell (Si, j) means that element
j is included in set Si and a “N” in that call means that element j is not included in set Si.

HH
HHHHSi

j
1 2 3 4 5 . . .

S1 Y N N Y N . . .
S2 N N Y N N . . .
S3 Y N Y N Y . . .
S4 N N N N N . . .
S5 N N Y Y Y . . .
. . . . . . . . . . . . . . . . . . . . .
Sk N Y N N N . . .

Let set D̄ = N−D = {i ∈ N | i /∈ Si}. This set is essentially formed by flipping the Ys
and Ns in the diagonal. This set D̄ is a subset of N so it must be equal to a set Sk = D̄ for
some natural number k. But this leads to the following contradictory statements.

1. If k /∈ D̄, then k ∈ D and thus k ∈ Sk = D̄.

2. If k ∈ D̄, then k /∈ D, thus k /∈ Sk = D̄.

Thus, we have our contradiction as k can either be in set D̄ or not in set D̄. Thus, our
assumption that P(N) is countable is false, that is, P(N) is not countable.

This contradiction technique is called diagonalization and we will see more examples
of it when we study undecidability.
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