CS 361: Theory of Computation

Assignment 1 (due 09/17/2024)

Instructor: Shikha Singh

LATEX Source for Solutions: https://www.overleaf.com/read/vqwcwffkbbcp#702e56

Problem 1. In class we proved that the power set of \mathbb{N} is uncountable using proof by contradiction and a diagonalization argument. Using the same technique, prove that the set \mathcal{B} of all infinite binary sequences is uncountable. An *infinite binary sequence* is an unending sequence of 0s and 1s.

Hint: Suppose \mathcal{B} is countable. Each $s_i \in \mathcal{B}$, it can be represented as $s_i = s_{i,1}, s_{i,2}, s_{i,3}, \ldots, s_{i,j}, \ldots$ where each $s_{i,j} \in \{0,1\}$. The list of all s_i 's can be represented in an infinite matrix where each cell (s_i, j) stores the bit $s_{i,j}$ as shown below.

j	1	2	3	4	5	
<i>s</i> ₁	0	1	0	0	0	
s_2	1	1	1	1	0	
s_3	1	0	1	0	0	
s_4	1	0	1	0	1	
s_5	0	0	0	1	1	
s_k	0	0	1	1	1	
			•••			

Problem 2. The following are the state diagrams of two DFAs, M_1 and M_2 . Answer the following questions about these machines.

- (a) What sequence of states does M_1 go through on input *aabb*?
- (b) Does M_1 accept the string *aabb*?
- (c) Does M_2 accept the string ε ?

Problem 3. Give state diagrams of DFAs recognizing the following languages. In all cases the alphabet is $\{0, 1\}$.

Remark: The first DFA is provided for reference of the LATEX source code using the tikz package. You can read more about how to typeset automata in tikz here: https://tikz.dev/library-automata. Alternatively, you may use any other software to draw the DFAs, or attach a clear picture of a hand-drawn figure.

(a) Solved Example: $\{w \mid w \text{ begins with a 1 and ends with a 0}\}$.

Solution.

- (b) $\{w \mid \text{ starts with 0 and has odd length, or starts with 1 and has even length}\}$.
- (c) $\{w \mid w \text{ every odd position of } w \text{ is a } 1\}$.
- (d) $\{w \mid w \text{ contains at least two 0s and at most one 1}\}$.

Problem 4. Let $L \subseteq \Sigma^*$ be a regular language. Show that the following two languages are also regular.

$$SUFFIXES(L) = \{ x \in \Sigma^* \mid yx \in L \text{ for some } y \in \Sigma^* \}$$
$$PREFIXES(L) = \{ y \in \Sigma^* \mid yx \in L \text{ for some } x \in \Sigma^* \}$$

Problem 5. Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. Assume the alphabet is $\{0, 1\}$.

- (a) The language $\{w \mid w \text{ contains an even number of 0s, or contains exactly two 1s}\}$. Give an NFA for this language with six states.
- (b) The language that contains a pair of 1s separated by an odd number of symbols (0s or 1s). Give an NFA with 4 states for this language.