
CS 361: Theory of Computation

Assignment 8 (due 11/20/2024 )

Instructor: Shikha Singh

LATEX Source for Solutions: https://www.overleaf.com/read/vvjbpbqrmksv#2add1a

Partner Work. You may complete this assignment in pairs. Both you and your partner
can solve the problems together and submit a single write up on Gradescope.

Problem 1. (Understanding Polynomial-time Reductions).

(a) Using an example of Graph-2-Color and Graph-3-Color, prove that the following
statement is False.

If A ≤p B and A can be decided in polynomial-time, then B can also be decided in
polynomial-time.

In particular, show that Graph-2-Color ≤p Graph-3-Color and that Graph-2-Color ∈ P.

(b) In lecture, some of you asked if there can exist problems in NP that are known to be
not NP-complete. Prove that finding such problems is the same as solving the P
versus NP question. In particular, prove that if there exists a non-trivial language
L ∈ NP such that L is not NP-complete, then P ̸= NP.

Equivalently, prove that if P = NP, then every non-trivial language L ∈ P is NP
complete. A language L is trivial if L = ∅ or L = Σ∗.

A Note of NP-completeness proofs. The next three questions will ask you to prove
that a given language X is NP Complete. A complete solution would include the following:

• Language X is in NP: give a polynomial-time NTM or a polynomial-size certificate and
polynomial-time deterministic verifier.

• State a known NP hard problem Y from class that you will use to prove X is also NP hard

• Show that Y ≤p X. Remember to:

– Prove that the reduction is correct by arguing both the “if” and “only if” directions

– Argue that your reduction is computable in polynomial time (a brief justification is
sufficient for this)

1

https://www.overleaf.com/read/vvjbpbqrmksv#2add1a


Assignment 8 2

For the purpose of this assignment as well as the exam, you can use any of the problems
whose NP-hardness was established in class or Chapter 7 of Sipser. Chapter 12 in Erickson’s
textbook is also a good reference for NP hard problems and their proofs. Here is a (not
necessarily complete) list of problems you may assume are NP hard for the purpose of
reducitons:

(a) Independent Set
(b) Vertex Cover
(c) Set Cover
(d) Clique
(e) Circuit-SAT/SAT/3-SAT

(f) Hamiltonian Cycle
(g) Hamiltonian Path
(h) Graph 3-color
(i) Subset-Sum

Problem 2. A double-Hamiltonian tour in an undirected graph G is a closed walk that visits
every vertex in G exactly twice. We want to prove that the problem of deciding whether a
given graph G has a double-Hamiltonian tour is NP hard.

(a) Consider the following incorrect reduction from Hamiltonian Cycle: Given a graph
G = (V,E) that is an input to the Hamiltonian Cycle problem, create a new graph
G′ = (V,E ′) where E ′ = E ∪ {(v, v)}. That is G′ is the same as G with self-loops
inserted to each node. This reduction maps “yes” instances of Hamiltonian Cycle to
“yes” instances of double-Hamiltonian tour. Show that this reduction is still incorrect
as it fails to map “no” instances of Hamiltonian Cycle to “no” instances of double-
Hamiltonian tour by giving a counter-example.

(b) Show that double-Hamiltonian tour is NP hard by giving a correct reduction from
Hamiltonian cycle.

Problem 3. (Problem 7.26 from Sipser) Let ϕ be a 3-CNF formula. An ̸=-assignment to
the variables of ϕ is one where each clause contains two literals with unequal truth values. In
other words, an ̸=-assignment satisfies ϕ without assigning three true literals in any clause.

(a) Show that the negation of any ̸=-assignment to the variables of ϕ is also an ̸=-
assignment.

(b) Let ̸=SAT be the set of 3-cnf formulas that have an ̸=-assignment. Show that we
obtain a polynomial-time reduction from 3SAT to ̸=SAT by replacing each clause ci =
(y1 ∨ y2 ∨ y3) with two clauses

(y1 ∨ y2 ∨ zi) and (zi ∨ y3 ∨ b),

where zi is a new variable for each clause ci and b is a single additional new variable.

(c) Conclude that ̸=SAT is NP-complete.

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf


Assignment 8 3

Problem 4. (Problem 7.27 from Sipser) A cut in an undirected graph is a separation of
the vertices V into two disjoint subsets S and T . The size of a cut is the number of edges
that have one end point in S and the other in T . Let

MAXCUT = {⟨G, k⟩ | G has a cut of size at least k}.

Show that MAXCUT is NP-complete. You may assume the result of Problem 3.
Hint: Show that ̸=SAT ≤p MAXCUT. The variable gadget for the variable x is a collection

of 3c nodes labeled x and another 3c nodes labeled x, where c is the number of clauses. All
nodes labeled x are connected with all nodes labeled x. The clause gadget is a triangle of
three edges connecting three nodes labeled with the literals appearing the clause. Do not
use the same node in more than one clause gadget. Draw a picture for an example ϕ to
visualize this graph. Fill in the gaps in this reduction and prove that it works.


