
CS 361: Theory of Computation

Assignment 2 (due 09/25/2024 )

Instructor: Shikha Singh

LATEX Source for Solutions: https://www.overleaf.com/read/mphkhbwznhnp#c83197

Problem 1. For any string w = w1w2 . . . wn, the reverse of w, written wR, is the string w
in reverse order, that is, wR = wn . . . w2w1. For any language L, let LR = {wR | w ∈ L}.
Show that regular languages are closed under the reverse operation, that is, show that if L
is regular, so is LR. (Hint. Use the fact that NFAs and DFAs are equivalent. Let M be the
DFA recognizing L, construct an NFA N , using M , that recognizes LR.)

Regular Expressions (Sipser Chapter 1.3.) So, far we have used machines to
recognize languages. We can also use grammars or expressions to generate the strings in
a language. The first example of this in the course is regular expressions. As we will see,
regular expressions are an alternate way to define and study regular languages. They are
defined in Definition 1.52 of Sipser, reproduced below.

We say R is a regular expression if R is

1. (a symbol) a for some a ∈ Σ,

2. (empty string) ε,

3. (empty set) ∅,

4. (union) R1 ∪R2, where R1 and R2 are (smaller) regular expressions,

5. (concatenation) R1 ◦R2, where R1 and R2 are (smaller) regular expressions, or

6. (Kleene star) R∗
1, where R1 is a regular expression.

Note that the definition is inductive (with three base cases). Example 1.53 in Sipser
describes several regular expressions and the corresponding languages. Review these before
answering the following questions.

Based on the definition, it is easy to see that we can create an NFA for any language that
is generated by regular expression. This is described in Lemma 1.55 in Sipser. We can argue
this inductively. It is possible to design a valid NFA for each of the base cases and since
we can construct NFAs for union, concatenation and Kleene star from these base cases, it is
possible to construct NFAs for any regular expression. For specific examples, see Example
1.56 and 1.58 in the textbook.

Problem 2. For each of the following regular expressions give

• a description of the language of the regular expression in English,

1

https://www.overleaf.com/read/mphkhbwznhnp#c83197


Assignment 2 2

• two strings that are members of the language and two strings that are NOT members
of the language, and

• the state diagram of an NFA that recognizes the same language.

Assume the alphabet Σ = {a, b}.

(a) a(ba)∗b

(b) a∗ ∪ b∗

(c) Σ∗aΣ∗bΣ∗aΣ∗

(d) (ε ∪ a)b

Problem 3. Give regular expressions generating the following languages.

(a) {w | w begins with a 1 and ends with a 0 }

(b) {w | w contains at least three 1s}

(c) {w | w contains the substring 0101}

(d) {w | w has length at least 3 and its third symbol is a 0}

Problem 4. Use the state-elimination algorithm on a generalized non-deterministic finite
automata (GNFA), (Convert(G), described on Page 73 in Sipser (Proof of Lemma 1.60)
to convert the following finite automaton to a regular expression. Show your work as you
eliminate each state. Refer to similar examples: Example 1.66 and 1.68 in the textbook (You
may attach a clear hand-drawn image of your work.)

q1

q2 q3

a

b

a
b

a

b

Problem 5. Let L be any language over the alphabet Σ. Let ≡L be the indistinguishability
relation over Σ∗ defined as: for any x, y ∈ Σ∗, they are indistinguishable with respect to
L, denoted x ≡L y if for all z ∈ Σ∗, xz ∈ L iff yz ∈ L. A relation if an equivalence relation
if it is symmetric, reflexive and transitive. Moreover, an equivalence relation ∼ over a set S
partitions it into equivalence classes, where two elements x, y ∈ S are in the same equivalence
class if only if they are related to each other that is, x ∼ y. Denote the equivalence class of
an element x ∈ S as [x].



Assignment 2 3

(a) Show that ≡L is an equivalence relation on Σ∗, that is, it is symmetric, transitive and
reflexive.

(b) Consider the language L described by the regular expression (0∪1)∗01. Draw a 3-state
DFA that recognizes L.

(c) Identify the three equivalence classes of ≡L over Σ∗. Note that [p] ̸= [q] if there exists
a another string r that distinguishes them, that is, pr ∈ L but qr /∈ L or vice versa.
You may use the 3-state DFA for L to identify these classes.


