
APPLIED
ALGORITHMS

Lecture 9: Assignment 2, Probability, and Hashing

ADMIN

• Assignment 2 grades and comments pushed to your
repo

•Mini-midterm due 10PM tomorrow

QUESTION

Which would you rather have:

• Two assignments: 1 assignment due next Wednesday, one assignment out
on Wednesday and due the Wednesday after Spring Break (I would assume
you’d work on it for ~1 week total: 3 days before break and 3 days after)

• Just one larger assignment due next Friday

SOME MINI-MIDTERM CLARIFICATIONS

Answer should be parameterized by s. (Should
not use the value of SHIFT in your code as a
constant—I’m asking how the I/Os change

depending on SHIFT)

SOME MINI-MIDTERM CLARIFICATIONS

Asks you to use the external memory model to
predict the best value of SHIFT. This may not line

up with practice!

ANY OTHER MINI-MIDTERM QUESTIONS?

• Note that the best value of SHIFT may not be too interesting (depends on
your implementation). I want you to implement the algorithm and see
what works best for you!

ASSIGNMENT 2

• I know that this class is hard and that not everyone has the same
background

• I am grading very generously on assignments because of this

• But I can’t give partial credit if you don’t hand anything in

• Please hand in answers to all questions, and hand in code!

ASSIGNMENT 2

• Resources for C

• Textbooks! (Very good.). On reserve (for 237) in library

• Also: come talk to me, ask classmates, etc.

• I’m looking into more formal options (not sure what’s possible)

ASSIGNMENT 2

• Code: lots of great ideas

• Unfortunately not all of them led to speedups

• In some cases two people implementing the same idea got
different results

• Some particularly effective ideas:

• Iterative version (no recursion, track the stack manually)

• Space-inefficient base case

• Keep old rows of table to avoid recomputations

ASSIGNMENT 2

• By far most expensive operation is min-of-3

• I believe that this is the best way to do it:

ASSIGNMENT 2

• By far most expensive operation is min-of-3

• I believe that this is the best way to do it:

• That said, many of the fastest submissions did not do it that way and the
assembly does not do anything special so who knows

ASSIGNMENT 2

I/Os for edit distance (space-inefficient algorithm, no backtracking)

• We fill out the table one row at a time

• How many I/Os does it take to fill out a row?

• For each B elements, need to bring in at most 6 blocks

• So a row of length 𝑛 takes 𝑂($
%
+ 1) I/Os if 𝑀 ≥ 6𝐵

• Overall I/Os?

• 𝑚 rows, so 𝑂(𝑚 $
%
+ 𝑚) I/Os

ASSIGNMENT 2

• Problem 3 (Extra credit): edit distance in 𝑂 $.
/%

+ $0.
%

I/Os

• Idea: tiling!

• What size do we want our tile to be?
• Want to be able to solve a tile-sized subproblem in cache

• If two strings have size 𝑂(𝑀), can solve in 𝑂(/
%
) I/Os

• Visualization on board

ASSIGNMENT 2

• Problems 4,5,6: Dynamic programming
• Tip for dynamic programming: you want to answer three

questions
• What does each entry of the table represent?
• What is the base case? What exactly is the value of each base case?
• How can I fill in each entry of the table using the other entries of the

table and the input?

ASSIGNMENT 2

• Problem 4: Bookshelf problem

• Let cost(𝑖, 𝑗) be the cost of putting book 𝑖 on shelf 𝑗 (can calculate in 𝑂(𝑘) time)

• Entry (𝑖, 𝑗) of the table represents the cost of the minimum solution that places
books 𝑏6, … , 𝑏8 on shelves 𝑠6, … , 𝑠: , where book 𝑏8 must be on shelf 𝑠:

• Base cases: (𝑖, 1) for all 𝑖 is ∑8<=6
8 𝑐𝑜𝑠𝑡(𝑖A, 1); (𝑗, 𝑗) for all 𝑗 is ∑:<=6

: 𝑐𝑜𝑠𝑡(𝑗A, 𝑗′)

Can skip

ASSIGNMENT 2

• Problem 4: Bookshelf problem

• Let cost(𝑖, 𝑗) be the cost of putting book 𝑖 on shelf 𝑗 (can calculate in 𝑂(𝑘) time)

• Entry (𝑖, 𝑗) of the table represents the cost of the minimum solution that places
books 𝑏6, … , 𝑏8 on shelves 𝑠6, … , 𝑠: , where book 𝑏8 must be on shelf 𝑠:

• To place book 𝑏8 on shelf 𝑠: , need 𝑏8C6 to be on 𝑠: or 𝑠:C6
• Entry (𝑖, 𝑗) = min (𝑖 − 1, 𝑗 , (𝑖 − 1, 𝑗 − 1)) + cost (𝑖, 𝑗) (need 𝑖 ≥ 𝑗)

ASSIGNMENT 2

• Problem 4: Bookshelf problem

• Can fill in table row-by-row. Each table entry takes 𝑂 𝑘 time

• Problem 5: Can we use linear space?

• Yes. Just keep two rows, as in edit distance

ASSIGNMENT 2

• Problem 6: Recover actual book placements in linear space

• Idea: Hirschberg’s!

• Every assignment of books 𝑏6, … 𝑏8 to shelves 𝑠6, … 𝑠: can be split into two parts for some 𝑘:

• An assignment of 𝑏6, … , 𝑏E to 𝑠6, … , 𝑠:/G
• An assignment of 𝑏E06, … , 𝑏8 to 𝑠H

I06
, … , 𝑠:

• Can find the cost of every possible split in 𝑂(𝑛𝑚𝑘) time, 𝑂(𝑚) space. Need to run second half
backwards so that all assignments are given with one call

• Remaining analysis is same as Hirshberg’s

ANY QUESTIONS?

• Assignment 2, mini-midterm?

• I have office hours today 3-4

CUCKOO HASHING

• Pagh, Rodler 2005

• Lookup time is 𝑂(1) in the *worst case!*

• Insert/delete is 𝑂(1) in expectation
• 𝑂 log 𝑛 worst case (same caveat as before)

CUCKOO HASHING INVARIANT

• Have two hash functions ℎ6, ℎG
• Table of size 𝑐𝑛 with 𝑐 = 2
• Invariant: item 𝑥 is stored either at slot ℎ6 𝑥 % 𝑐𝑛, or at slot
ℎG 𝑥 % 𝑐𝑛
• I’ll talk about inserts in a second
• How do we query?
• How much time does that take?

CUCKOO HASHING INSERTS

• Let’s put a new item 𝑥 into our hash table. How?

• Easy case: if slot ℎ6 𝑥 % 𝑐𝑛 or ℎG 𝑥 % 𝑐𝑛 is free, can just store 𝑥

• What if they’re both full?

• Answer: pick one of the slots. Kick the item stored there out; store it using its other
hash

• Hence “cuckoo”

Cuckoos kick
other birds’ eggs
out of the nest,
replacing them
with their own

CUCKOO HASHING EXAMPLE

5 93 51 89Table:

CUCKOO HASHING EXAMPLE

5 93 51 89Table:

Insert new item: 33. ℎ6 33 = 0, ℎG 33 = 3

CUCKOO HASHING EXAMPLE

33 5 93 51 89Table:

CUCKOO HASHING EXAMPLE

33 5 93 51 89Table:

Insert new item: 49. ℎ6 49 = 3, ℎG 49 = 1

CUCKOO HASHING EXAMPLE

33 5 93 51 89Table:

Insert new item: 49. ℎ6 49 = 3, ℎG 49 = 1

CUCKOO HASHING EXAMPLE

33 5 93 51 89Table:

Let’s choose to kick out 5, replacing it with 49

CUCKOO HASHING EXAMPLE

33 49 93 51 89Table:

Now we need to find a place for 5

CUCKOO HASHING EXAMPLE

33 49 93 51 89Table:

Reinsert item: 5. ℎ6 5 = 0, ℎG 5 = 1

CUCKOO HASHING EXAMPLE

33 49 93 51 89Table:

We have to kick out 33. (Don’t want to loop back)

CUCKOO HASHING EXAMPLE

5 49 93 51 89Table:

Reinsert item: 33. ℎ6 33 = 0, ℎG 33 = 2

CUCKOO HASHING EXAMPLE

5 49 33 93 51 89Table:

Reinsert item: 33. ℎ6 33 = 0, ℎG 33 = 2

CUCKOO HASHING EXAMPLE

5 49 33 93 51 89Table:

Done!

CUCKOO HASHING ANALYSIS

• Insert: expected number of swaps is 𝑂(1)

• Largest number of swaps is 𝑂(log 𝑛)

• Wait a minute…does this always work?

• No.

CUCKOO HASHING FAILURE

33 5Table:

ℎ6 33 = 0, ℎG 33 = 1
ℎ6 5 = 0, ℎG 5 = 1
ℎ6 17 = 0, ℎG 17 = 1

We can’t maintain the
invariant!!!

CUCKOO HASHING FAILURE

• [PR’05]: the probability of failure is only 𝑂(⁄1 𝑛)
• What do we do if we fail???
• Pick new hash functions and start from scratch

• (Ouch)

CUCKOO HASHING

• Advantages?

• Great worst-case performance on queries

• Only two cache misses on queries

• Fairly simple

• Disadvantages?

• Rebuilds are a huge issue!

• Two cache misses can be much worse than linear probing

• On inserts, every swap of an element is another cache miss

• Space usage is not great

You can avoid this by storing a
constant number of elements in each

slot (say 4)

EXPECTATION

• Expectation is like a weighted average, in the context of probability

Expectation = ∑YZ[\Y.]^ Y 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜 ∗ 𝑐𝑜𝑠𝑡(𝑜)

• Example: I roll a die; if there’s a 6 I win $60. What is my expected winnings?

• 0 ∗ 6
e
+ 0 ∗ 6

e
+ 0 ∗ 6

e
+ 0 ∗ 6

e
+ 0 ∗ 6

e
+ 60 ∗ 6

e
= 10

LINEARITY OF EXPECTATION

• If a random variable 𝑋 = 𝑋6 + 𝑋G, then 𝐸 𝑋 = 𝐸 𝑋6 + 𝐸[𝑋G]

• This is ALWAYS true. Don’t need 𝑋6 and 𝑋G to be independent!

HASH FUNCTION

• We need a function that will decide what slot each item goes in

• Generally: start with a function with large output, then take % tablesize

• Can lead to slight issues unless output is very large—be careful!

• What do we want out of a hash function?

• Quick to compute

• Small space to store

• Random enough that we get small chains/small buckets

HASH FUNCTION DISCUSSION

• Fully-random hash functions are very unreasonable
• Take forever to evaluate, and/or take tons of space

• Practice often uses simpler functions

HASH FUNCTIONS IN JAVA

• Does anyone know how Java .hashCode() hashes a 64 bit Long?
• (What is your guess?)

• Answer: return x ^ (x >> 32);

• Is this going to work well for hashing?

MULTIPLY-SHIFT HASHING

• The hash you used on Mini-midterm 1

• How fast is it?

• How good is it?

• Answer: pretty good! Let’s say the output is from 0,… , 𝑛 − 1

• If you choose the integer you multiply by at random, Pr ℎ 𝑥 = ℎ 𝑦 = 1/𝑛

• Let’s look at an element that hashes to a given value. How many collisions in expectation if we hash 𝑛
elements?

• ∑1/𝑛 = 1. (wow!)

MULTIPLY-SHIFT HASHING

• Expectation is that one extra element hashes to each bucket

• Why is this not always good enough?
• Average is not always good!

• For example: might have one bucket of size 𝑛, rest of size 1

• Good on average, but some queries are very slow!

MURMURHASH

• Popular implementation that does a little more work than multiply-shift

• Two basic operations: XOR, and “rotate”
• Rotate is like a shift, but when bits “fall off” they are replaced on the other side

• Can be implemented with two shifts and a bitwise OR

• Code

MURMURHASH

• Compared to multiply-shift it’s definitely slower

• Is it better???

• Theoretically: doesn’t necessarily even give constant-sized buckets in expectation

MURMURHASH

Average of square of bucket sizes. Data is an intentionally bad (albeit reasonable) case

From “Practical Hash Functions for Similarity Estimation and Dimensionality Reduction” by
Dahlgaard, Knudsen, Thorup NeurIPS 2017

MURMURHASH

Average of square of bucket sizes. Data is an intentionally bad (albeit reasonable) case

From “Practical Hash Functions for Similarity Estimation and Dimensionality Reduction” by
Dahlgaard, Knudsen, Thorup NeurIPS 2017

Murmurhash
looks exactly
like random

Long tail!
(= bad)

MURMURHASH

• Does this actually impact anything?

• From same paper: Yes. Let’s say we use hashing to estimate how many elements two sets share in
common

MURMURHASH

• Much more resilient than multiply-shift to more-difficult statistical tests (beyond average case)

• One more example: let’s say we hash “number strings”: “1”, “2”, … “216553”

• (Cool experiment from https://softwareengineering.stackexchange.com/questions/49550/which-
hashing-algorithm-is-best-for-uniqueness-and-speed)

• (I wouldn’t normally cite stackexchange but this is really cool)

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

SDBM (A
POPULAR HASH)

• You can see big clusters and big
gaps when hashing number
strings!

• (SDBM works pretty well on
most inputs though)

MURMURHASH

• Doesn’t have this issue

ROTATE AND XOR

• Many other PRNGs and hashes under this paradigm

• Is moving bits around like this randomly enough?

• No! Example: “SuperFastHash”

• From https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-
best-for-uniqueness-and-speed

• If you hash all English words, Murmurhash has 6 collisions

• SuperFastHash has 85

https://softwareengineering.stackexchange.com/questions/49550/which-hashing-algorithm-is-best-for-uniqueness-and-speed

CAN WE DO BETTER?

• All of these hash functions rely on the input being “random” enough to do
consistently well

• What if we REALLY want evenly-spread elements?

• What if the security of our application depends on evenly-spread
elements?
• You may want to be resilient to an attacker

• I.e. timing attacks

CRYPTOGRAPHY

• We know how to encode stuff pretty well

• It’s basically impossible to decode---information about the output tells us
nothing about the input whatsoever

• Doesn’t that mean it’s about as “random” as it can get?
• Yep.

• So why don’t we use it?

CRYPTOGRAPHIC HASH FUNCTIONS

• Easily obtainable, work very well
• Important for security
• Downside: generally high cost
• Options?
• MD5: broken

• SHA1: broken

• SHA256, SHA3: OK for now (many other options: BLAKE2 etc.)

SPEED COMPARISON (32 BIT)

From https://github.com/Cyan4973/xxHash

https://github.com/Cyan4973/xxHash

THURSDAY

• Start applications of randomness to small-space data structures

• In meantime: work on midterm.

• Good luck!

