
Applied
Algorithms

Lecture 6: External memory and code
review

Lecture 6: Sorting, sorting, and more
sorting

Admin

• Examples posted on site, also base cases
• Hoping to help you avoid tedious edge case debugging!

• Previous slides updated/corrected
• Assignment 2 testing up and running (I think!)

• detailedScriptFeedback.txt
• Questions/comments?

Today

• More external memory model practice, proofs, and examples
• “Code review”: how can you make a super fast two towers

executable?
• Discussion of some really cool ideas
• Some topics in scope of class—we’ll go into more detail

Quicksort

• Let’s go through this formally
• Assume:
• after 𝑂(𝑘) recursive calls, the input size decreases by 2&
• There are 𝑂(𝑛/𝑆) calls such that this recursive call is of size ≤ 𝑆, and the

parent recursive call is of size ≥ 𝑆
• (Will “prove” during/after randomized algorithm analysis next week)

• How do we analyze?
• Let’s look at the recursion tree

Quicksort

Array of size n

Array of size ? Array of size ?

Array of size ? Array of size ? Array of size ? Array of size ?

. . .

Quicksort

Array of size n

Array of size ? Array of size ?

Array of size ? Array of size ? Array of size ? Array of size ?

. . .

Quicksort

Array of size n

Array of size ? Array of size ?

Array of size ? Array of size ? Array of size ? Array of size ?

. . .

Quicksort

Array of size n

Array of size ? Array of size ?

Array of size ? Array of size ? Array of size ? Array of size ?

. . .

Strategy

• Sum in parts:
• What is the total cost of all leaf nodes?
• What is the cost of each level of the tree?

Leaf nodes

• If a recursive call is to an array of size ℓ- ≤ 𝑀, then only need
𝑂 1 + ℓ1

2
I/Os

• Why?
• All memory regions accessed in this subcall are to the array of size ℓ-
• With perfect caching, none of them will get evicted! So worst possible cost is

that each block gets brought in once.
• Why 1?
• Because if ℓ- < 𝐵 the equation is not true otherwise

Leaf nodes

• We assumed that there are 𝑂(5
6
) recursive calls that are of size ≤ 𝑀

(with parent of size > 𝑀)

• Total size of leaf nodes: ∑- ℓ- = 𝑛

• Total cost: ∑- 1 +
ℓ1
2

= 𝑂 5
6

+ 𝑂((∑- ℓ-)/𝐵) = 𝑂(𝑛/𝐵)

Cost of level i

• Assume that level 𝑖 has subproblems of size 𝑘;- , 𝑘=- , … , 𝑘?-

• Can we bound how many non-leaf subproblems there are?
• Yes, ≤ 𝑁/𝑀

• What is the cost of a subproblem of size 𝑘A-?

• 𝑂(1 +
&B
1

2
)

• What is the total size ∑A 𝑘A?

• Summing, cost of level 𝑖 = ∑A 𝑂 1 +
&B
1

2
= 𝑂 C

6
+ 𝑂 C

2
= 𝑂 C

2

Putting it all together

• By assumption, have 𝑂 log=
C
6

levels containing non-leaf nodes

• Total cost:

• 𝑂 C
2
+ 𝑂 C

2
∗ 𝑂 log=

C
6

= 𝑂(C
2
log=

C
6
)

Matrix
multiplication

The problem

• Given two 𝑛×𝑛 matrices 𝐴, 𝐵
• Want to compute their product 𝐶:
• 𝑐-A = ∑&L;5 𝑎-&𝑏&A

• Example:

1 2

8 -1

2 3

-2 7

-2 17

18 17
× =

How do we do this?

for i = 1 to n
for j = 1 to n

for k = 1 to n
C[i][j] = A[i][k] + B[k][j]

How many I/Os does it take?

Every addition requires an I/O for B: 𝑂(𝑛O)

Can we improve this?

for i = 1 to n
for k = 1 to n

for j = 1 to n
C[i][j] = A[i][k] + B[k][j]

How many I/Os does it take?

Inner loop gets B additions per I/O: 𝑂(𝑛O)/𝐵

Can we improve further??

• Our goal is to perform all 𝑂(𝑛O) multiplications with the fewest
possible I/Os.

• Restated: our goal is to have each I/O result in the maximum possible
number of multiplications.

• What is the most efficient way we can use our cache???

Can we improve further??

• If we have three matrices,
each of total size < M/3, we
can fit them all in cache and
multiply them

• How many I/Os does this
take?

• How many multiplications
do we get out of it?

Cache
(size M)

How can we take advantage of this?

• Can we partition matrix multiplication into a series of multiplications
of matrices of size at most M/3?

Blocking (tiling)

Blocking (tiling)

• Partition each matrix into ”tiles” (ideally, should fit in memory)
• Outer loop: perform a normal matrix multiplication of two 𝑛/ 𝑀×𝑛/
𝑀 matrices

• Inner loop: for each tile, multiply the matrices as usual

Blocking (tiling)

Analysis

• How many tiles do we need to multiply?
• Answer: 56×

5
6×

5
6 =

5P

6P/Q

• How many I/Os does it take to multiply two tiles and store the result?
• Answer: let’s assume that 𝑀 is much larger than 𝐵
• Then we can read in each matrix in 𝑂(62) I/Os

• Total cost: 𝑂(5P

2 6
) I/Os

• Is this the entire cost?
• Yes

External memory analysis

• This is the level of analysis I would like on your homework and exams

• When in doubt: break into easily-digestible problems, sum their costs

• Should be somewhat familiar expectations (from 256)

• Tiling is likely to be very very very useful in this class!

What about sorting?

• Quicksort: 𝑂((𝑛/𝐵) log(𝑛/𝑀))

• Can we do better?

• What does the cache of size M get us?

Sorting really large data

• Stick to merge sort for simplicity
• Intuition: How much cache is used?
• About 3 blocks

• Can we merge more arrays?
• How many can we merge?
• ~𝑀/𝐵

𝑀/𝐵-way merge sort

Algorithm:
• Split array into 𝑀/2𝐵 equal-sized parts
• Recursively sort each
• Merge all ⁄𝑀 2𝐵 arrays into a final sorted array

• Cost? (Let’s assume 𝑛 is a power of 𝑀/2𝐵, and all subarrays have
size that’s a multiple of 𝐵, for simplicity)
• First: how long does this big merge take?

Cost of a merge

Cache
(has at least B items from

each of M/B lists)

Sorted subarray

Sorted subarray

Sorted subarray

Sorted subarray

Sorted subarray

Final output

How a merge works

• Take smallest 𝐵 elements from cache, output them
• If any subarray has ≤ 𝐵 elements in the cache, take in another 𝐵

elements from that subarray.

• Analysis?
• Total output I/Os to final array?
• 𝑂(⁄𝑘 𝐵) on a subproblem of size 𝑘
• Total input I/Os from subarray?
• 𝑂(⁄ℓ- 𝐵) on a subarray of size ℓ-, so total 𝑂(⁄𝑘 𝐵)

𝑀/𝐵-way merge sort

Recurrence:

• 𝑇 𝑛 = 6
2
𝑇 52

6
+ 𝑂(5

2
)

Solve using your favorite method

Final running time: 𝑂(C
2
log6/2

C
2
)

• (Outside scope of class) Optimal!

Is this a thing?

• Yes-for large enough data

• Usually 6
2

in the base of the log isn’t really worth it until you get to
sorting things on the hard drive

• Can we make a quicksort-like algorithm using this?
• Yes; it’s called “distribution sort”

Permutation

• Let’s say I want to shuffle my data to a particular position
• (Like sorting, but I don’t need comparisons)
• Think of it as sorting the numbers 1…𝑛

• How can I do this?

Permutation

• Computation cost?
• 𝑂(𝑛 log 𝑛) to sort, 𝑂 𝑛 to place

• I/O cost?
• 𝑂(𝑛) to place, 𝑂(52 logU/V

5
2) to sort (or, 𝑂(52 log= 𝑛/𝑀))

• When is this better?
• When 𝐵 > log 𝑛, and array is large enough that I/Os matter

Basically always true

What about trees?

• What is binary search wasting?

• How can a tree structure resolve this?

B-trees

• Branching factor of B rather than 2
• (Also have some nice balancing rules)

• Cost of searching a B-tree?
• 𝑂(logV 𝑛/𝐵)

• Is this better? Turns out: nearly always (even if it’s just a little bigger than 2
to optimize for L1 cache)
• (But not by too much)

Carrying back to practice

• How do we implement this? Do we plug in our best guess for M and B?
What level of the hierarchy do we use?

• Cache improvement: predicted by model

• Constants: experimentation

• What should you be looking for in your code??
• Opportunities to sort
• Opportunities to split into moderate-sized “chunks” (both for moving data around

(B), and for keeping in cache (M))

Two towers

Today

• I’ll talk about a few cool optimizations
• No one had all of these optimizations!
• (I don’t think so at least)

• I learned a lot this lab—some of these are very clever
• Both in idea and implementation

First idea: sort two tables

• We discussed last time: makes binary searches much more efficient

• But can actually improve beyond this!

Improving searches

Sorted table 1 Sorted table 2

Improving searches

Sorted table 1 Sorted table 2

Seems like a good place to start…

Will we ever need to look at these again?

Improving searches

• Just need to scan through each table once
• Merge-like operation: move down whichever pointer keeps us under the

target

• So what’s our algorithm?
• Generate tables
• Sort tables
• Scan through for answer

Generating tables quickly

• If we’re not careful, takes 𝑂 𝑛 to generate each table entry
• (Need to add up sums)

• How can we avoid this?

Grey codes (?)

Grey code

• Permute 1…n (n is a power of 2)
• Two successive numbers only differ in one bit position

• Example: (000, 001, 011, 010, 110, 111, 101, 100)
• (0, 1, 3, 2, 6, 7, 5, 4)

Grey codes

• Widely applicable concept!
• Useful when swapping bits has a large cost
• That’s our situation
• Error-prone hardware
• Useful for generating binary codes with good locality properties

Grey codes: a simple way to generate

• Simple recursive rule
• Let’s say we have a grey code G of (k-1)-bit numbers, want a grey

code of k-bit numbers
• Solution:
• prepend 0 to all numbers in G
• Prepend 1 to all numbers in rev(G)
• Concatenate
• Why does this work?

Grey codes in two towers

• For each number we want to generate:
• Find the bit to swap to get to the next number in the grey code
• Figure out if that bit is going 0-1 or 1-0
• Add or subtract the correct number

• Challenges?
• Need to get bit to swap quickly
• (And figure out which direction it’s going)
• Floating point issues

Quickly finding bit to swap

• Binary reflective grey code has a nice property:
• To get the ith number, need to swap bit lsb(i)
• (lsb = least set bit. For example, 3 = 11, so lsb(3) = 1; 12 = 1100, so

lsb(12) = 3)

• How can we do this quickly?
• Clean loop; averages 2 iterations
• OR: ffs()

• Does it automatically
• On (very) modern processors, the CPU does this in one operation!!

Comment about library calls

• ffs() tells the CPU to do it in one operation if possible
• sqrt() does this too!
• You may have noticed that sqrt() is actually absurdly fast on testing machines

• When you have a low-level operation, check to see if C can do some
low-level work for you

Optimized grey code method

• Iterate through each i
• Swap the correct bit (lsb(i)), add or subtract the corresponding input value

• Advantages?
• 2-3 operations per new table entry
• Definitely way better than summing from scratch each time

• Disadvantages?
• Final table ordering is a bit arbitrary
• Have to implement, have to deal with floating-point loss
• One “if” per entry (? Did anyone get rid of this with a grey code method?)

Generating the table

• Do we need this overhead?

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Generating the table

• Do we need this overhead?

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Generating the table

• To incorporate item i:
• For all table slots j from 0 to 2- − 1:
• Copy slot j to slot 2- − 1 + 𝑗
• Add item 𝑖 to it

• (Example on board)
• Basically just a couple linear scans, no floating point problems

Two towers

• So what’s our algorithm?
• Generate tables
• Sort tables
• Scan through for answer

Basically just a scan or two

Sorting is now the entire problem

• qsort() is pretty slow
• Why?
• Backend problem: C cannot inline the comparison function
• Need to set up a function on the call stack for every comparison

• Three better options:
• Make your own sort
• Call C++’s sort
• Call a library with a good sort (like timsort)

Make your own sort

• Not too hard to beat qsort by ~10-20%

• Quicksort implementation, switch to insertion sort if problem size is
small
• Why?
• Constants
• Nearly-sorted data

Calling C++

• C++ has std::sort()
• It’s just a good quicksort implementation
• Optimized more than you likely have time to do
• CAN inline comparisons! (due to improved backend)
• About 10x faster than qsort() for simple types

• Pretty easy to call C++ from C code
• Do need to compile with g++ though

• (Please don’t go crazy with this; make sure your code is readable in C)

Call a library

• Not many “official” sorting libraries for C
• I don’t know why

• Only one submission got this working I think

• Some libraries have fancy sorts, like timsort

std::sort()

• Quicksorts large data
• Switches to insertion sort after a certain point

• Also: detects poor pivot performance, switches to another sort if
things are going badly

• Pivot selection is implementation-dependent so far as I can tell
• Often median-of-3

Timsort

• More recent sorting method
• On sufficiently small arrays, timsort does insertion sort

• Let’s talk about what it does otherwise

First pass: run generation

• Before sorting a large array, timsort looks through the array for big
“runs” of nearly-sorted data

• What does this look like for your cache?

Run generation: cache perspective

Cache (store ~M sorted
items)

Final output

Read in a new itemWrite smallest
item in cache

Second step: merge runs

• Timsort then takes these large-ish runs and merges them together
• Carefully selects merges
• Merging different-sized arrays is not too helpful

• Merging has a first step of binary search
• Often, one array is strictly bigger

• One more optimization: big step, small step

Big step, small step

• Let’s say we’re merging two arrays, and we’ve passed a large number
of items in the smaller array
• One option: binary search for the next place
• log 𝑛 time

• Can we do better?
• Repeatedly double the size of each step, then binary search
• If we want to skip forward k, this takes 𝑂(log 𝑘)

Timsort

• Performs much better than quicksort on almost-sorted data

• So if we want to sort really fast:
• Our starting tables should be somewhat sorted
• Then perform an “adaptive” sort like timsort

• How can we guarantee somewhat-sorted tables?
• Sort input

Final optimization

• We are searching for the optimal smaller tower
• Idea: instead, search for the tower closest to the target (above or

below) that contains the first item
• Advantage: one table becomes half as big
• Disadvantage: binary search needs to be “closest” instead of predecessor

