
Applied 
Algorithms
Lecture 5: Cache efficiency



Admin

• Assignment 2 out

• Assignment 1 back soon

• Short(ish) code review Thursday

• Mini-midterm next week



Assignment 1

• Went pretty well

• Lots of great ideas and discussion!

• Everyone had very fast code
• I thought I’d be near the middle L



Reminders about submissions

• Don’t need to beat my time (of course)

• Ties get good points
• You are motivated to collaborate so long as you wind up in the ballpark of each other

• Times get much lower (~10% or so) during tests
• One motivation to submit early



Changes



Feedback / late days

• The script should now tell you something about what went wrong
• Wrong answer/seg fault/bad output/worse time/etc.
• In errors.txt

• Assignments get 20% off per day late
• Syllabus updated later today



Testing code

• Guess and check coding
• Not reflective of the task
• Debugging is a skill!
• Loop invariants, etc: can you prove that your code always works?

• But: sometimes it happens
• Time/results tradeoff
• Black box issues: works on every input except the secret test



Testing moving forward

• I gave many more tests on Assignment 2

• Can “buy” five more tests for 5 points
• Minor penalty
• But, encourages you to exhaust other options

• This will all be updated on the assignment overview handout soon



In-class descriptions

• My goal was to give a “high-level” description in class, and a more detailed description 
on the assignment itself

• Interpreting a description into code is a part of the class
• Midterms don’t have a leaderboard, etc.

• But I think I’m going to back off this a bit and try to address more details

• I will edit slides over the next couple days



Edit distance



A few important points

• First: strings in C

• “Null-terminated”: just an array that ends in a special character
• ‘\0’
• This character has value 0 if (say) cast to an int



Storing solutions

• I mentioned last time that there are a few good ways
• Probably the easiest: build them bottom-up using arrays

• Create a simple solution for the base case
• After both recursive calls, find out the size of both solutions
• Create a new array large enough to handle both together
• Copy them over
• Delete the solutions from the recursive calls
• Pass the solution to the next level up



Subproblems

• Make sure your subproblems don’t overlap!
• Think of it as partitioning both strings

• Hirshberg’s works because:
If ED(X,Y) = c, then if we divide X in half to get X[1,…,n/2] and X[n/2+1,…n], 
there must be a partition of Y into Y[1,…a] and Y[a+1,…n] such that
ED(X[1,…,n/2],Y[1,…a]) + ED(X[n/2+1,…,n],Y[a+1,…,n]) = c

(Proof on board)



Subproblems: example
a a b

0 1 2 3

c 1 1 2 3
• Edit distance between cde and aab
• String length/2 = 1

b a a

0 1 2 3

e 1 1 2 3

b a a

e 1 1 2 3

d 2 2 2 3



Subproblems: example
a a b

0 1 2 3

c 1 1 2 3
• Edit distance between cde and aab
• String length/2 = 1

• Most efficient to match c to a (cost 1) 
and de to ab (cost 2)

• Recurse on Hirshberg’s(c,a) and 
Hirshberg’s(de, ab)

b a a

0 1 2 3

e 1 1 2 3

b a a

e 1 1 2 3

d 2 2 2 3



Two towers



An optimization

• Almost all of the fastest solutions used an algorithmic optimization
• Original idea: generate a table, binary search over it for each subset
• 𝑂 𝑛2$/& time

0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111



Idea

• Generate two tables, sort both of them
• Then do the binary search
• This improved performance by a factor 2ish

0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Why?

• Are the asymptotics better?
• Nope

• Constants?
• No, we’re doing the same work
• (We’ll discuss Thursday: can avoid the searches entirely.  But even 

implementations that kept binary searches were sped up)



The answer

• Cache efficiency!



Cache

• Your CPU needs to fetch data before it can process it
• Your computer would never run if it ran off the hard drive
• Caching to the rescue!

• Fast memory close to the processor, to minimize time spent reading 
data





RAM: pretty big and slow



L3/L2 Cache



L1 Cache





What goes in the fast memory?

• Can’t fit much
• Who controls it?



How do these work?

• Your computer decides what is stored where
• It’s very good at it

• Also maintains consistency, etc.

• How to decide what data should be stored in the valuable L1/L2 
caches?
• Computer knows nothing about your program or your data
• Most recently used data!  It’s likely to be accessed again



One note:

• This is a massive simplification on modern machines
• TLBs, shared memories, new hardware
• Modern machines have many levels of cache
• Not always even clear that “level” is meaningful



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

0 0000

1.63 0010

4.76 0100

5.9 0110

9.74 1000

12.15 1010

15.97 1100

18.72 1110

21.78 0001

24.83 0011

36.02 0101

37.01 0111

40.56 1001

40.84 1011

43.92 1101

49.26 1111



Getting back to two towers

• Your table probably did not fit in cache---it was stored in RAM
• Before: had to access RAM almost every step (~21 steps) during the 

binary search

• After sorting: only have to access RAM ~once!

• If you sort both tables, the binary search has an almost-negligible cost



How cache works

• Data is moved around in large(ish) “chunks”
• Idea: nearby data is also, likely, useful

• Called a “cache line”
• Aligned (this is important for fine tuning, but we will mostly ignore)
• L2/L1 cache line: ~64 bytes



What can we do with this?

• Can we model it?

• Can we predict how well an algorithm will perform, or is it purely 
experimental?



Simplifying assumptions

• Just look at one level of the memory hierarchy
• It’s very common that one is the bottleneck

• Assume that the computer always keeps the right things in memory
• Pretty close to practice

• Just focus on moving items around
• Ignore computation time (can analyze separately)



External 
Memory Model

Also called “DAM” or “Disk Access 
Model”



Components

• We have a small cache (of size M)
• Rest of memory is unbounded size.  Let’s call it the “disk.”
• It’s not always a hard disk (oftentimes it’s the RAM), but “disk” emphasizes its 

size and slowness
• Can only compute on data that is in cache
• But computation is free

• Move data around in blocks of size B
• Each movement is called an “I/O”
• Some people call it a “disk access” or a “cache miss”

• Analyze using big-O notation, parameterized by M and B



Cache



Components

Cache
(size M)

1 3 4 3 78 2 99 47 53 61

B }
How do we read 
in an item from 
disk? (say 78)



Components

Cache
(size M)

1 3 4 3 78 2 99 47 53 61

}

How do we read 
in an item from 
disk? (say 78)

3 78 2

Costs 1 to bring it 
into memory

Now we can 
compute using 78!
And we get 3 and 
2 if they’re useful.



Simple example

• How many I/Os does it take to find the minimum element in a list?
• Well, how can we move memory around to do it? 



Simple example

• How many I/Os does it take to find the minimum element in a list?
• Well, how can we move memory around to do it? 

Cache
(size M)

1 3 4 3 78 2 99 47 53 61

B }



Simple example

• How many I/Os does it take to find the minimum element in a list?
• Well, how can we move memory around to do it? 

Cache
(size M)

1 3 4 3 78 2 99 47 53 61

B }



Finding the minimum

• How many I/Os does it take?

• Why doesn’t M come into the picture?  Does any value of M work?



Binary search

• Let’s assume you do just one binary search.  How many I/Os does it 
take?

• How do we find out how long binary search takes when counting 
operations normally?
• Each operation divides the size of the input in two
• We stop, at the latest, when we get to a range of size 1



Binary search

• When do we stop?
• When we get to a range of size B

• So if ℎ is the height of our recursion, we have 𝑛/2( = 𝐵

• Solving, ℎ = log& 𝑛/𝐵

• Not very good!  (Although better than 1 I/O for EVERY operation)



Quicksort

• How many I/Os does it take to partition?
• Basically a linear scan!  𝑂(𝑛/𝐵)

• At each “level” of quicksort we need to partition all array items
• How many levels?
• Divide by 2 until size M
• 𝑂(log&𝑛/𝑀)

• Overall I/Os: 𝑂((𝑛/𝐵) log(𝑛/𝑀))



Matrix 
multiplication



The problem

• Given two 𝑛×𝑛 matrices 𝐴, 𝐵
• Want to compute their product 𝐶:
• 𝑐56 = ∑89:$ 𝑎58𝑏86

• Example: 

1 2

8 -1

2 3

-2 7

-2 17

18 17
× =



How do we do this?

for i = 1 to n
for j = 1 to n

for k = 1 to n
C[i][j] = A[i][k] + B[k][j]

How many I/Os does it take?

Every addition requires an I/O for B: 𝑂(𝑛=)



Can we improve this?

for i = 1 to n
for k = 1 to n

for j = 1 to n
C[i][j] = A[i][k] + B[k][j]

How many I/Os does it take?

Inner loop gets B additions per I/O: 𝑂(𝑛=)/𝐵





Can we improve further??

• Our goal is to perform all 𝑂(𝑛=) multiplications with the fewest 
possible I/Os.

• Restated: our goal is to have each I/O result in the maximum possible 
number of multiplications.

• What is the most efficient way we can use our cache???



Can we improve further??

• If we have three matrices, 
each of total size < M/3, we 
can fit them all in cache and 
multiply them

• How many I/Os does this 
take?

• How many multiplications 
do we get out of it?

Cache
(size M)



How can we take advantage of this?

• Can we partition matrix multiplication into a series of multiplications 
of matrices of size at most M/3?



Blocking (tiling)



Blocking (tiling)

• Partition each matrix into ”tiles” (ideally, should fit in memory)
• Outer loop: perform a normal matrix multiplication of two 𝑛/ 𝑀×𝑛/
𝑀 matrices

• Inner loop: for each tile, multiply the matrices as usual



Blocking (tiling)



Analysis

• How many tiles do we need to multiply?

• How many I/Os does it take to multiply two tiles and store the result?



What about sorting?

• Quicksort: 𝑂((𝑛/𝐵) log(𝑛/𝑀))

• Can we do better?

• What does the cache of size M get us?



What about trees?

• What is binary search wasting?

• How can a tree structure resolve this?



Carrying back to practice

• How do we implement this?  Do we plug in our best guess for M?  
What level of the hierarchy do we use?

• Cache improvement: predicted by model

• Constants: experimentation


