Applied
Algorithms

Lecture 4: Hirshberg's Algorithm
UPDATED 2/26

~moq _
mir. '°d1fie,.\
= - ™
wir. o tion _ ~blect 3
Mro ek RRQ
."’l " -u x \x.z
— = T
®irror . . "USe y _
"Or“ -llSei ¥ Fa]j. .
~OPeratjon . —~ = False
rror P \ &
Wirror ::ss:-" = False .
®irror mo |-use~¥ = True

True

election at the end -add W
W*_ob.select= 1 -

"ier_ob.select=1
“ntext.scene.objects.activg
| "Selected”™ + str(modifies,
irror_ob.select = 0

bpy - context.selected_&”
,ta.objects[one.name].se

int("please select exacthy

Admin

 Office hours Tuesday are now 3-4

* THIS week they are 3-5 Tuesday

« Wednesday office hours THIS week are 10:30-2:30

* No class Thursday (I'm at a review panel Thursday-Friday)

* Assignment 1 is due Saturday
* I'll be around Saturday if you need help

Some simple efficiency principles

Time vs Space themed

I Cost of operations

* Adding? Multiplying? Floats? Ints?
* Dividing? Modulo?

Touching
memory

Notes on how this works

* Allocation itself is essentially O(1)
« Writing to lots of places in memory is expensive

* How expensive is it?
* Let's say we do a modulo, and an if, and a memory store (butin a
small number of places)

* Which is more expensive?

Edit Distance N L

I Problem

* Given two strings A, B
 Edit: insert, delete, replace (each costs 1)

* What is the minimum number of edits to get from A to B?

I Example

OCURRANCE VS OCCURRENCE
OCURRANCE
OCCURRANCE

OCCURRENCE

Replace A with E

I Algorithm: Dynamic Programming

* How can you build up edit distance recursively?

I Base case:

If X has length 0, what is the edit distance between X and a
string Y?

I Recursion: characters match

If the last characters of X and Y match, what is the edit
distance between X and Y?

OCCURRAN

OCCURREN

I Recursion: characters dont match

If the last characters of X and Y do not match, what is the edit
distance between X and Y?

OCCURRA

OCCURRE

Dynamic programming

* Entry (i,)) in the table is the edit distance between the first i
characters of X and the first j characters of Y

C E

gramming: example
CCURREN

O

I Dynamic pro

© © [~ [V [(b | | [«
o ~N |0 o | | |m [N ™
0 O | | | | |N [[
~ o | |o | N ;[=
Ne! < |o ||~ | |m [« (o
LO ™ N [« [N [0 [|1 |©
< N [~ | [[|1 |0 [~
™ — [~ | N [| |1 [O |
N © |« |N [[« [1b [© |~
— — [N [0 | |1 [V [~ |©
o N [[(b [0 [~ [0 |0

@ I o A A S AL O I £

Analysis

Two strings of length m and n
* Time: O(mn)

* Space: O(mn)

I Can this be improved?

I Can this be improved?

Time: No. (Probably not)

Edit Distance Cannot Be Computed
in Strongly Subquadratic Time
(unless SETH is false)

Arturs Backurs
MIT
backurs@mit.edu

ABSTRACT

The edit distance (a.k.a. the Levenshtein distance) between
two strings is defined as the minimum number of insertions,
deletions or substitutions of symbols needed to transform
one string into another. The problem of computing the

Piotr Indyk
MIT
indyk@mit.edu

with many applications in computational biology, natural
language processing and information theory. The problem of
computing the edit distance between two strings is a classical
computational task, with a well-known algorithm based on
dynamic programming. Unfortunately, that algorithm runs
in anadratic fime which ic nrohibitive for lono cedalnences

Can this be improved?

Space?

Question: how do you fill out the dynamic programming
table?

C E

gramming: example
CCURREN

O

I Dynamic pro

© © [~ [V [(b | | [«
o ~N |0 o | | |m [N ™
0 O | | | | |N [[
~ o | |o | N ;[=
Ne! < |o ||~ | |m [« (o
LO ™ N [« [N [0 [|1 |©
< N [~ | [[|1 |0 [~
™ — [~ | N [| |1 [O |
N © |« |N [[« [1b [© |~
— — [N [0 | |1 [V [~ |©
o N [[(b [0 [~ [0 |0

@ I o A A S AL O I £

I Can this be improved?
OCCURRENGCE

H Q=22 XA QO
N
N

Can this be improved?

Space?

* Need only keep two lines in memory. Space 0 (min{n, m})

Time?
« Same. (Do we lose any constants in terms of operations?)

* This generally significantly improves running time in practice

I Recovering the edits

How can we figure out the actual inserts, deletes, etc. to get
from one string to the other?

OCCURRENZCE

I Recovering the edits

© oo |0 |~ [0 |1 |1 [[|
o~ [0 |~ [V [| | [m | |m
©w |~ [V |1 [[0 o [| |
~N o (b | MmN N, |
O b [|™ |N [« | |m [|1
o [|[o | |~ [N [m | [1v |©
< [|N |~ [N | [|1 |[©o [~
™M | N [~ |« [N [| (1O | O [P
N |« [O©O |~ | N [| |1O [O |
— | |~ | |[m | |1 |0 |~ |
© |« [N | [[1b |V [~ |0 |o

CLOLMEMmMAMCZ O M

OCCURRENZCE

I Recovering the edits

© oo |0 [~ [© [(b [[0 |

/

4

o~ [0 |~ [V 1 | | [™m | |[m
® [~ [V b [|0 |o [N o |
~N | o | |m NN m
O LN < o N — N o < L0
o | |o | [« [[[(v |0
< | ||~ | [[[[0 [~
™ AN — — N o < LO O ™~
N [« o [« | | [[1b [©O [~
— |© |« | |m |5 |1 |0 [~ |©
© |~ | |™m [|1 |0 [~ |0 |O

CLOLMEMmMAMCZ O M

OCCURRENZCE

I Recovering the edits

© oo |0 |~ [0 [|1 [[|
| } df
vV | ¥
o~ i NG RO I Aﬂ < | |Netm
v | ¥ v / v v
0 _/_ S |1 | o_o ™M | N €<
v v (v
N i B | [P N Qe |
| | v .4
v | V¥ Y v |[v [Y ¥
O | Q_V N | — N) @<t €-LO
I \\
vy [V nw v | v
o | S J_ | T NSO 40 40
V.
v |[Y |y [¥
< | | N ,I_A..2Au.3A| N € WO @0 €I
v [¥Y [v [V
™M | N 4 — = N N = LD = O I~
v [¥ [
N |~ | O €N M St L0 @O N
y/
\4 y ¥
— | O |« €N S € < € L0 O €= € O
y
| T 4
Ot T N €=M €= <t €= LD = O€= M @00 €=+ O~

OCULULPDMEMMEMACZOUMH

OCCURRENZCE

I Path gives you the edits

© oo |0 |~ [0 |10 b [[|

o

o~ o |~ [0 | | | |0 | |

‘\
O (Y [O |1 IS | oo oo N o |
\
SN R TORNN IR S e T oV oV Yo T I
‘\
O (1D IS | o0 N |«— | N [0 [(O
of
n (K | | N |~ | N M [(1 [0
o7
< [0 | |~ | [[[|0 |~
‘\

™M | N [«— |« [N | | (1O | O [P
*

N |« [O |« [N M | (1O | O [P
o
—
AN

CLOLMEMMEMCGZ O M

()
CCQCCCICCC
= +— +~ +~ Q +~ +
aasaaaeaaa
>SS LS e===

Recovering the edits

* This takes lots of space!
« Which is inefficient

« Can we get the best of both worlds—linear space as well as
recovering the edits?

I Recovering just one edit

* Let's say | want just one piece: what is the (rightmost) square
in the middle row on the solution path?

* Can | do this in O(min{n, m}) space?

OCCURRENZCE

I Recovering the edits

© oo |0 |~ o (b | | |
o~ |0 [~ |0 <+ (< |™ | [
© |~ [V | ™ |N [|
~N |0 (b | N | (S|
O (10 | N ™ [¢ |w
o [|™ ™ | (1 |©
< [| < |1 [|©
™ (Q\ — — < LO LO O
AN — o — < LO O ™
— - — N S LO O ™~ oo
© |~ |~ |m™ 1o |0 [~ | |o~

OCL LW 2 0O H

\ 4

I Recovering the edits

OCCUR

I Recovering the edits

The entry we are looking for (i,n/2) is the one that minimizes:

(Edit distance from first n/2 characters of string 1 to first i
characters of string 2) + (Edit distance from last n — n/2
characters of string 1 to last m — i characters of string 2)

I How efficiently can we get these?

 Edit distance from (0,0) to (i,n/2) for all i:

* O(nm) time, O(n + m) space

10

I How efficiently can we get these?

 Edit distance from (0,0) to (i,n/2) for all i:

* O(nm) time, O(n + m) space

I How efficiently can we get these?

 Edit distance from (0,0) to (i,n/2) for all i:

* O(nm) time, O(n + m) space

I How efficiently can we get these?

 Edit distance from (0,0) to (i,n/2) for all i:

* O(nm) time, O(n + m) space

I How efficiently can we get these?

 Edit distance from (0,0) to (i,n/2) for all i:

* O(nm) time, O(n + m) space

I How efficiently can we get these?

* How can we get edit distance from (i,n/2) to (n,m) for all i?

* (Be careful about off-by-one! Remember that this should be testing the
cost of matching the “rest” of string 1 to the “rest” of string 2)

* Issue: we don’t want to start over from every starting point

e |dea: run it backwards!

* (edit distance stays the same if we reverse both strings)

I Recovering the edits
OCCURRENCE

H Q=2 XX QO

I Recovering the edits

ECNERIRUCCDO

MO 2 M

I Recovering the edits

ECNERIRUCCDO

7o I - @ Wl £

I Recovering the edits

ECNERIRUCCDO

7o I - @ Wl £
w
N
(&)
N
w
DS
ol
o~

I Recovering the edits

ECNERIRUCCDO

7o I - @ Wl £
w
N
(&)
N
w
DS
ol
o~

I Recovering the edits

ECNERIRUCCDO

7o I - @ Wl £

I Recovering the edits: Putting it together

Cost of second half of reversed X
to reversed Y

Cost from (0,0) to (i,n/2) for all i

I Recovering the edits: Putting it together

Cost from (i,n/2) to (m,n) for all i

Cost from (0,0) to (i,n/2) for all i

I Recovering the edits: Putting it together

10

11

Careful-need to line up arrays
so that we never reuse a

character of String 2
(They line up exactly here)

I Recovering the edits
O CCIO RRENTCE

* We know the optimal path
goes through this entry

e Now what?

e Recursel!!
e Where?

* Why don’t we need to look
at the rest of the table?

H Q=2 XA QO

I Recovering the edits
O CCIO RRENTCE

H Q=2 XA QO

I Recovering the edits
O CCIO RRENTCE

H Q=2 XA QO

I Recovering the edits
RRENCE

And so on, until we have
the entire path

H Q=22 020G QO

I Recovering the edits

* If one string is empty, return trivial edits

* Otherwise:
* Run space-efficient edit distance on top-right
* Run space-efficient edit distance backwards on bottom-left
* Lowest total edit distace is where the path goes through

* Recurse to find remaining path of top-left and bottom right

I Space?

* O(min{n, m})
 Space-efficient edit distance algorithm

« Keep track of the current path

I Time?

* Intuitively, what do you think it is?
* Linear (in the table size) for each value of the path obtained
« But, it's getting smaller

* How much smaller does the table get every time?

I Recovering the edits
O CCITT R RENZCE

How much smaller does the
table get every time?

H Q=2 XA QO

I Recovering the edits

OCCIUORRFENCE
-

How much smaller does the
table get every time?

H Q=2 XA QO

I Recovering the edits
OCCURRENCE

How much smaller does the
table get every time?

H Q2 » XA QO

I Time: recurrence

e Let's say the path goes through element k

n

*T(n,m) = T(E’k) + T(g,m — k) + 0 (nm)

Solving the recurrence

n

n
e T(n,m) = T(;,k) + T(E,m — k) + c,nm
* Assume that T(n,m) < c;nm, let ¢c; = 2¢,
* Key part of inductive proof:

cink . cqn(m-—k)

2

e cinm < + + co,nm

cin(m-—k)
2

cink cinm

+ S = inm

I

*cinm <

I s this actually good?

 Space efficiency is linear instead of quadratic
* |s the time higher?

* Asymptotics: no

« Constants? Absolutely

e |s the tradeoff worth it?

* You'll find out in Assignment 2.
* (It probably is)

