
Applied
Algorithms

Lecture 3: Allocation and
Efficiency

Today

• Discuss assignment submission (and this assignment)

• Finish up C

• Talk in more detail about efficiency

• (Maybe) start space-efficient edit distance

Pros and cons of running a local setup

Pros:

• Access to hardware

• No immediate feedback

• Control over testing

• More ability to fix bugs

Cons:

• Less Security

• No immediate feedback

• More bugs

Assignment 1

• Posted

• Choose your own partners

• I will send an email today for people who want to be
assigned a partner

• Repos will be out after class; automatic testing will start
tonight or tomorrow

Where are things
stored?

• First place: in CPU register, never in memory

• Temporary variables like loop indices
• Compiler decides this

• Second place: call stack

• Small amount of dedicated memory to keep track
of current function and local variables

• Pop back to last function when done
• Temporary!

Third place: the heap

• Very large amount of memory (basically all of RAM)

• Using new in Java or C++ puts variable on the heap

• We use malloc
• Does not zero out memory. calloc does
• C will not make you instantiate your variables

• Needs stdlib.h

• Returns pointer; don’t need to cast to pointer type

Ways to store things

• Speed: registers > stack > heap

• Size: heap > stack > registers

• Longevity: heap > stack > registers

• Java rules work out well: store ”objects” and arrays on heap,
just declare small “primitive types” and let the compiler
work it out (Remember scope!!)

Allocation, pointers, and arrays

• What is an array?

• Can we use arrays without using array-like things?
• Using pointers and malloc instead?

• Does this allow us to allocate arrays dynamically?

• Pointers and arrays are (mostly) equivalent in C

Memory leaks

• C does not have a garbage collector
• Fast, efficient, you actually really want to be able to control this
• But, obviously, huge pain and difficult to debug

• free() releases memory
• Can be used for another variable
• Not zeroed out

• Every malloc() should have a free()!

• After your program ends all memory is released

Memory leaks

• C does not have a garbage collector
• Fast, efficient, you actually really want to be able to control this
• But, obviously, huge pain and difficult to debug

• free() releases memory
• Can be used for another variable
• Not zeroed out

• Every malloc() should have a free()!

• Every malloc() should have a free()!
• After your program ends all memory is released

Segmentation faults

• Access “illegal” memory
• Address that the OS didn’t give your program

• Given very very little information

• Debug using gdb (checkpoints, etc.)

• valgrind is useful for checking memory

Header files

• Generally end in .h

• Contain useful information
• Function declarations

• Structs, constants

Compiling and building

• Compile: convert code into machine-executable code
• gcc –c [file name]

• Link: stitch together function calls between files

• Build: whole process
• What gcc actually does when given file
• Need to list compiled object files

• Student example

What happens when we change one file?

• Need to recompile that file

• Need to build final output file

• Can we do this automatically?

Makefile

• Lists dependencies

• Lists what you actually want to build

• Entire command: make

• If a file changes, compiles only what’s necessary

• make clean, make debug

• Very very useful!

In this class

• I will give you makefile

• Don’t need to change unless you use multiple files
• You can, but probably won’t ever need to

• Projects in this class are fairly small and self-contained

Variable types

• Int, long, etc. not necessarily the same on different systems
• (If you use Windows long is likely 32 bits, but on Mac and Unix it’s

generally 64 bits)

• (long long is 64 bits)

• Include stdint.h

• Unsigned (?)

Variable types

• Ints are OK for things like small loops

• If you care at all about size, should use int64_t
• Fixed platforms means you don’t NEED to for this class

• (Except to handle function calls from test)

• Good to get in the habit – guaranteed minimum size

• Unsigned is up to you
• Controversial if they’re a good idea

Variable types

• int64_t, int32_t

• uint64_t, uint8_t

• uint_fast64_t

• uint_least8_t

• INT64_MAX

Function pointers and sorting

Some simple efficiency principles

Time vs Space themed

Amdahl’s law

• If a function takes up a p
fraction of the entire program’s
runtime, and you speed it up
by a factor s, then the overall
program speeds up by a factor

1

1 − 𝑝 + 𝑝𝑠

Amdahl’s law and asymptotics

• If a portion of your program is asymptotically dominated by
another, it is less likely to be worth speeding up

Cost of operations

• Adding? Multiplying? Floats? Ints?

• Dividing? Modulo?

Touching
memory

Notes on how this works

• Allocation itself is essentially O(1)

• Writing to lots of places in memory is expensive

• How expensive is it?
• Let’s say we do a modulo, and an if, and a memory store (but in

only one place)

• Which is more expensive?

• Why am I cheating on the single “memory store”?

Function inlining

• Calling a function takes time (why?)

• With simple functions we can avoid that time

• To “inline” a function means to replace its contents in the code
rather than doing a function call

• gcc will do this for you (and it’s really good at it)

• inline keyword: suggest to gcc that it should inline the function
• Side effects in terms of linkage

Edit Distance

Problem

• Given two strings A, B

• Edit: insert, delete, replace (each costs 1)

• What is the minimum number of edits to get from A to B?

Example

Algorithm: Dynamic Programming

• How can you build up edit distance recursively?

Analysis

• How much time does it take to calculate the edit distance
between two strings of length n?

• How much space?

For next class

• How can we do this in O(n) space?

