Applied
Algorithms

“ier_ob.select=1

Lecture 3: Allocation and
Efficiency

~moq _
mir. ®Odifien
irrg bject A ,..\
— -mj ir
. ration __ ~bdect 3
rror =
.lr‘rol..:md':se\x ™ T\x.S
.ll"l"op 1 SQJ = Fa
Ope i s 1
Irr-o:atm“ g Faliy
—mod . \ oy
MArror mog ye—X = False :
®irror mod ::J = True

election at the end -add W
W_ob.select= 1 -

“ntext.scene.objects.activg
I "Selected™ + str(modifies

girror_ob.select = 0
bpy .context. selected_dp”
yta.objects[one.name].se

int(~“please select exacthy

OPERATOR CLASSES ===

A
X i irror_X
:ject-ﬂlrror’
rror
-) s not -
mtext): ect™
¢ acthE,

Today

* Discuss assignment submission (and this assignment)
* Finish up C
* Talk in more detail about efficiency

* (Maybe) start space-efficient edit distance

Pros and cons of running a local setup

Pros: Cons:

* Access to hardware * Less Security

* No immediate feedback * No immediate feedback
» Control over testing * More bugs

* More ability to fix bugs

Assignment 1

* Posted
* Choose your own partners

* | will send an email today for people who want to be
assigned a partner

* Repos will be out after class; automatic testing will start
tonight or tomorrow

INACTIVE
FRAME

INACTIVE
FRAME

INACTIVE
FRAME

ACTIVE
FRAME

N <

-

>

RETURN LINKTO N-3

RETURN LINKTO N-2

RETURN LINKTO N-1

AVAILABLE
STACK
SPACE

STACK
28 *™ ORIGIN
27
26
o5
24
23
22
21
20

STACK
<am POINTER
=9

O = NWHL,UION OO

Public Domain 2006

Agateller for Wikipedia

Where are things
stored?

* First place: in CPU register, never in memory
« Temporary variables like loop indices
« Compiler decides this

« Second place: call stack

« Small amount of dedicated memory to keep track
of current function and local variables

* Pop back to last function when done
* Temporary!

Third place: the heap

* Very large amount of memory (basically all of RAM)
» Using new in Java or C++ puts variable on the heap

 \We use malloc

* Does not zero out memory. calloc does
« C will not make you instantiate your variables

* Needs stdlib.h

* Returns pointer; don’t need to cast to pointer type

Ways to store things

* Speed: registers > stack > heap
* Size: heap > stack > registers

 Longevity: heap > stack > registers

* Java rules work out well: store "objects” and arrays on heap,

just declare small “primitive types” and let the compiler
work it out (Remember scope!!)

Allocation, pointers, and arrays

* What is an array?

« Can we use arrays without using array-like things?

 Using pointers and malloc instead?

* Does this allow us to allocate arrays dynamically?

 Pointers and arrays are (mostly) equivalent in C

I Memory leaks

« C does not have a garbage collector
* Fast, efficient, you actually really want to be able to control this
 But, obviously, huge pain and difficult to debug

* free() releases memory
e Can be used for another variable
 Not zeroed out

* Every malloc() should have a free()!

 After your program ends all memory is released

I Memory leaks

« C does not have a garbage collector

* Fast, efficient, you actually really want to be able to control this
 But, obviously, huge pain and difficult to debug

* free() releases memory

e Can be used for another variable
 Not zeroed out

* Every malloc() should have a free()!
« Every malloc() should have a free()!
 After your program ends all memory is released

Segmentation faults

 Access “illegal” memory
« Address that the OS didn’t give your program

* Given very very little information
* Debug using gdb (checkpoints, etc.)

* valgrind is useful for checking memory

I Header files

* Generally end in .h

e« Contain useful information

e Function declarations

e Structs, constants

Compiling and building

« Compile: convert code into machine-executable code
* gcc -c [file name]

e Link: stitch together function calls between files

* Build: whole process
« What gcc actually does when given file
* Need to list compiled object files

* Student example

What happens when we change one file?

* Need to recompile that file

* Need to build final output file

* Can we do this automatically?

I Makeftile

e Lists dependencies

* Lists what you actually want to build

* Entire command: make

* If a file changes, compiles only what's necessary
* make clean, make debug

* Very very useful!

I In this class

* | will give you makefile

* Don't need to change unless you use multiple files

 You can, but probably won't ever need to

* Projects in this class are fairly small and self-contained

Variable types

* Int, long, etc. not necessarily the same on different systems

e (If you use Windows long is likely 32 bits, but on Mac and Unix it's
generally 64 bits)

* (long long is 64 bits)
* Include stdint.h
* Unsigned (?)

Variable types

* Ints are OK for things like small loops

* If you care at all about size, should use int64_t

* Fixed platforms means you don’t NEED to for this class
* (Except to handle function calls from test)

« Good to get in the habit - guaranteed minimum size
* Unsigned is up to you

« Controversial if they're a good idea

Variable types

* int64 t, int32_t
e Uintb64 _t, uint8_t
e uint_fast64 _t

e uint_least8 t

* INT64_MAX

I Function pointers and sorting

Some simple efficiency principles

Time vs Space themed

I Amdahl’'s law

Two independent parts A B « If afunction takes up a p

fraction of the entire program'’s

- runtime, and you speed it up
Original process s

by a factor s, then the overall
program speeds up by a factor

1
Make A 2xfaster [1 —p+

Make B 5xfaster I

<

s

I Amdahl’s law and asymptotics

e If a portion of your program is asymptotically dominated by
another, it is less likely to be worth speeding up

I Cost of operations

* Adding? Multiplying? Floats? Ints?
* Dividing? Modulo?

Touching
memory

I Notes on how this works

* Allocation itself is essentially O(1)
« Writing to lots of places in memory is expensive

* How expensive is it?

* Let's say we do a modulo, and an if, and a memory store (but in
only one place)

* Which is more expensive?

* Why am | cheating on the single “memory store”?

I Function inlining

* Calling a function takes time (why?)
« With simple functions we can avoid that time

* To “inline” a function means to replace its contents in the code
rather than doing a function call

 gcc will do this for you (and it's really good at it)

* inline keyword: suggest to gcc that it should inline the function

« Side effects in terms of linkage

Edit Distance N L

I Problem

* Given two strings A, B
 Edit: insert, delete, replace (each costs 1)

* What is the minimum number of edits to get from A to B?

I Example

. Insert(C)
Substitute(E)

Delete(l) Substitute(X) | Substitute(U)

| IN|T |E|* IN|T

I [|

*EX|E|[CIU|T

I Algorithm: Dynamic Programming

* How can you build up edit distance recursively?

I Analysis

« How much time does it take to calculate the edit distance
between two strings of length n?

* How much space?

I For next class

e How can we do this in O(n) space?

