
Applied
Algorithms

Lecture 2: Meet in the Middle

(and more C)

Admin

• Google form due midnight tonight (please fill!)

• Email me if you’re still not registered

• Names during questions

• Assignment 1 will be posted soon; we’ll go over instructions
on Thursday

Meet in the
middle

Shortest path

Shortest path

• How quickly can
we find the
shortest path in
this graph?

• What algorithm
should we use?

Shortest path

n nodes, m edges

Dijkstra’s alg:
• O(m + n log n) time

Is there structure in this
graph that lets us
improve this?

Shortest path

Unweighted!

BFS is sufficient

Time?

• O(m + n)

Shortest path

How about now?

I claim that this case is
easier. Why?

Shortest path

Let’s say nodes are at distance k

• Time for BFS?
• (High level)

• O(num nodes at distance k + num edges at dist k+1)

Let’s say nodes are at distance k

• Time for BFS?
• (High level)

• O(num nodes at distance k + num edges at dist k+1)

Shortest path

Let’s say nodes are at distance k

• Time for BFS?
• (High level)

• O(num nodes at distance k + num edges at dist k+1)

Shortest path

Shortest path

What other structure does this
graph have?
• 3-regular!
• (All vertices degree 3)

Now can we say the running
time in terms of k?
• 𝑂 2#

Any ideas for how to improve this?

• What is the topic for today again?

Meet in the middle

• Let’s say we know k ahead of time, and all vertices are unvisited

• Go backwards k/2 steps from the target node. Mark resulting
vertices as visited
• (How do we do this? How much time does it take?)

• Go forwards k/2 steps from the start node. If you find a marked
vertex, you have your path

MITM

MITM

MITM

MITM

MITM

MITM

MITM

MITM

MITM: done!

Meet in the middle analysis

• Need to go k/2 steps of BFS backward in a 3-regular graph
• 𝑂 2#/% time

• Need to go k/2 steps of BFS forward in a 3-regular graph
• 𝑂 2#/% time

• Total time and space?
• 𝑂 2#/%

• When is this useful?
• Exponential time is best

Assignment 1: Two towers

• Given: a sequence of “areas”
of blocks

• Goal: stack the blocks into two
towers that are as equal as
possible

The second-best solution if the
blocks have areas {1, 2, …, 15}

Assignment 1: Two towers

• Given: a sequence of “areas”
of blocks

• Equivalent goal:
• find half the total height of the

blocks (“target” height)
• What subset of the blocks is

closest to this target without
going over? The second-best solution if the

blocks have areas {1, 2, …, 15}

How to solve two towers?

• Solution 1: iterate through all possible subsets of blocks
• Find the best

• Time with n blocks? Space?
• 𝑂 𝑛2' time, 𝑂 𝑛 space

How can we “meet in the middle”?

• Need to divide problem into two halves

• Partial solution from each half

• Partial solutions can be combined into a full solution

102 301 47 8 79 15 3 1009

Meet in the middle

102 301 47 8 79 15 3 1009

• Let’s say we have a partial solution of cost X in the left half

• What do we need from the right half?
• Largest partial solution of cost (target – X)

• We don’t have nodes to mark as ”visited.” How can we keep
track of this instead?

Meet in the middle

102 301 47 8 79 15 3 1009

10.01 17.34 6.86 2.83 8.88 3.87 1.73 31.76

Target = 41.7

0 0000

31.76 0001

1.73 0010

33.49 0011

3.87 0100

35.63 0101

5.6 0110

37.36 0111

(Top half of table)

What do we want out of this table?

• Query: what is the largest value no larger than Y
• Y = Target – X

• What is this called?
• Predecessor query

• What is the simplest data structure to use for this?
• Sorted array. (Other options too!)

Meet in the middle

102 301 47 8 79 15 3 1009

10.01 17.34 6.86 2.83 8.88 3.87 1.73 31.76

Target = 41.7

0 0000

31.76 0001

1.73 0010

33.49 0011

3.87 0100

35.63 0101

5.6 0110

37.36 0111

8.88 1000

40.64 1001

10.61 1010

42.37 1011

12.75 1100

44.51 1101

14.48 1110

46.24 1111

Meet in the middle

102 301 47 8 79 15 3 1009

10.01 17.34 6.86 2.83 8.88 3.87 1.73 31.76

Target = 41.7

0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

Meet in the middle
102 301 47 8

Target = 41.7
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

• Go through each subset of remaining half

• Look up best solution in the table!

• {102, 47} -> {10.10, 6.86}

• Sum = 16.96

• Want sln less than 41.7 – 16.96 = 24.74

Meet in the middle
102 301 47 8

Target = 41.7
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

• Go through each subset of remaining half

• Look up best solution in the table!

• {102, 47} -> {10.10, 6.86}

• Sum = 16.96

• Want sln less than 41.7 – 16.96 = 24.74

Meet in the middle
102 301 47 8

Target = 41.7
0 0000

1.73 0010

3.87 0100

5.6 0110

8.88 1000

10.61 1010

12.75 1100

14.48 1110

31.76 0001

33.49 0011

35.63 0101

37.36 0111

40.64 1001

42.37 1011

44.51 1101

46.24 1111

• What is the guarantee for {102, 47}?

• Of all solutions that contain exactly 102 and
47 from the first 4 numbers, the best
solution is {102, 47, 79, 15, 3}

• Height = 14.48 + 16.96 = 31.44

Meet in the middle for two towers

• Take last n/2 items

• Calculate height of all subsets
• How many subsets?

• How long does calculating the height take?

• Store in sorted table
• How long does sorting take?

Meet in the middle for two towers

• Take first n/2 items

• For all subsets:
• Calculate their height X

• Look up largest number smaller than (target – X) in the table
• (How? How long does that take?)

• If resulting total height is best so far, store it

Meet in the middle analysis

• Making the table time and space:
• 𝑂 𝑛2'/% time, 𝑂 𝑛2'/% bits of space (how many 64-bit words?)

• Searching the table time and space:
• 𝑂 𝑛2'/% time, 𝑂 1 words of space (assuming 𝑛 ≤ 64)

• Exponential speedup compared to 𝑂 𝑛 2' brute force

Can we do better than a sorted table?

• What do we need from this table?

• Can we use a hash table?

• Can we use a tree? What advantages might a tree provide?

MITM: Enormously useful trick

• Very common in crypto in particular
• Big step, little step

• Use extra space, but take MUCH less time
• Worth it?

Let’s get back
to C

Careful coding

• Good coding practice is much much much more important
than ever

• Include asserts to check array ranges

• Code, test, code, test

• Split into functions and test separately!

• Check your pointers!

• Corner cases! (Is this pointer null? Is this value 0?)

• Speed is not your first priority, correctness is

Course motto(s)

• “Premature optimization is the root of all evil”

• “We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil. Yet we should not pass up our opportunities in
that critical 3%.”

Pointers, functions, and structs

• Creating function

• Passing is always by value. Can pass struct instances

• How do we change a variable inside a function?
• Pass the address—the address doesn’t change, but the value does!

• -> operator

• Structs stored contiguously in memory

Allocation

• “new” in Java and C++ allocates space for a new instance of
a variable

• C uses “malloc”

• Very much user-controlled: you set the space, no garbage
collection

Where are things
stored?

• First place: in CPU register, never in memory

• Temporary variables like loop indices
• Compiler decides this

• Second place: call stack

• Small amount of dedicated memory to keep track
of current function and local variables

• Pop back to last function when done
• Temporary!

Third place: the heap

• Very large amount of memory (basically all of RAM)

• Using new in Java or C++ puts variable on the heap

• We use malloc
• Does not zero out memory. calloc does
• C will not make you instantiate your variables

• Needs stdlib.h

• Returns pointer; don’t need to cast to pointer type

Ways to store things

• Speed: registers > stack > heap

• Size: heap > stack > registers

• Longevity: heap > stack > registers

• Java rules work out well: store ”objects” and arrays on heap,
just declare small “primitive types” and let the compiler
work it out (Remember scope!!)

Allocation, pointers, and arrays

• What is an array?

• Can we use arrays without using array-like things?
• Using pointers and malloc instead?

• Does this allow us to allocate arrays dynamically?

• Pointers and arrays are (mostly) equivalent in C

Memory leaks

• C does not have a garbage collector
• Fast, efficient, you actually really want to be able to control this
• But, obviously, huge pain and difficult to debug

• free() releases memory
• Can be used for another variable
• Not zeroed out

• Every malloc() should have a free()!

• After your program ends all memory is released

Segmentation faults

• Access “illegal” memory
• Address that the OS didn’t give your program

• Given very very little information

• Debug using gdb (checkpoints, etc.)

• valgrind is useful for checking memory

• We’ll see some examples of these Thursday

Compiling and building

• Include and function declarations
• Compile: convert code into machine-executable code

• gcc –c [file name]

• Link: stitch together function calls between files
• Build: whole process

• What gcc actually does when given file
• Need to list compiled object files

• Student example

What happens when we change one file?

• Need to recompile that file

• Need to build final output file

• Can we do this automatically?

Makefile

• Lists dependencies

• Lists what you actually want to build

• Entire command: make

• If a file changes, compiles only what’s necessary

• Very very useful!

In this class

• I will give you makefile

• Don’t need to change unless you use multiple files
• You can, but probably won’t ever need to

• Projects in this class are fairly small and self-contained

Variable types

• Int, long, etc. not necessarily the same on different systems
• (If you use Windows long is likely 32 bits, but on Mac and Unix it’s

generally 64 bits)

• (long long is 64 bits)

• Include stdint.h

• Unsigned (?)

Variable types

• Ints are OK for things like small loops

• If you care at all about size, should use int64_t
• Fixed platforms means you don’t NEED to for this class

• Good to get in the habit

• Unsigned is up to you
• Controversial if they’re a good idea

