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Introduction: Finding Similar Items



Back to Normal Inputs

• Today: no more streaming! Have all data available to us.

• But data is still big!

• In particular: high-dimensional

• Table with many columns

• For each netflix user, what movies have they seen

• Goal: solve a difficult, but important, problem
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Finding Similar Pair

• Given a set of objects

• Find the most similar pair

of objects in the set
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Why Find Similar Objects?

• Find similar news articles for user suggestions.

• Similar music: Spotify suggests music by finding similar users,

and selecting what they listen to

• Machine learning in general (training, evaluation, actual

algorithms, etc.)

• Data deduplication, etc.

• “Give me a similar pair in this dataset” is a common query!
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Strategies for Similarity Search



First attempt: 1-dimensional data

92

44

7

65

60

23

80

67

• Given a list of numbers

• “Similarity” is the

difference between them

• How can we find the closest

numbers (i.e. ones with

smallest difference)?
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First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do

this?

• Step 1: Sort!

• Step 2: Scan through list,

find most similar adjacent

elements.

• O(n log n) time
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First attempt: 1-dimensional data

7

23

44

60

65

67

80

92

• How efficiently can we do

this?

• Step 1: Sort!

• Step 2: Scan through list,

find most similar adjacent

elements.

• O(n log n) time

5

Aside: can we do better? Yes, there’s a

clever O(n) algorithm based on

sampling.



Two-dimensional Data?

• You likely saw this in CS

256.

• Divide and conquer,

O(n log n) time.

• (Again, possible in O(n))
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What About Higher Dimensions?

• We want VERY high dimensions (millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA

sequence

• Classic options: quad trees, kd trees

7



What About Higher Dimensions?

• We want VERY high dimensions (millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA

sequence

• Classic options: quad trees, kd trees

7



What About Higher Dimensions?

• We want VERY high dimensions (millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA

sequence

• Classic options: quad trees, kd trees

7



What About Higher Dimensions?

• We want VERY high dimensions (millions)

• Songs listened to, movies watched, image tags, etc.

• Words that appear in a book, k-grams that appear in a DNA

sequence

• Classic options: quad trees, kd trees

7



How Efficient are High-dimensional Algorithms?

• O(n log n) for constant

dimensions

• But: exponential in

dimension!

• Worse than trying all pairs

if > log n dimensions
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Curse of Dimensionality

• Many problems have running time exponential in the

dimension of the objects.

• Well-known phenomenon

• Applies to similarity search, machine learning, combinatorics
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Avoiding the Curse of Dimensionality

• Today we’re talking about how to get efficient algorithms for

arbitrarily large dimensions.

• Linear cost in terms of dimension (but expensive in terms of

the problem size).

• Two tools to get us there:

• Assume that the close pair is much closer than any other

(approximate closest pair)

We’ll come back

to this later

• Use hashing! ...A special kind of hashing
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Locality-Sensitive Hashing



Locality-Sensitive Hashing

• Normally, hashing spreads out elements.

• This is key to hashing: no matter how clustered my data

begins, I wind up with a nicely-distributed hash table

• Locality-sensitive hashing tries to hash similar items together
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Locality-Sensitive Hashing: Formal Definition

• Needs a similarity threshold r , an approximation factor c < 1

• Two guarantees:

• If two items x and y have similarity ≥ r , h(x) = h(y) with

probability at least p1.

• If two items x and y have similarity ≤ cr , h(x) = h(y) with

probability at most p2.

• High level: close items are likely to collide. Far items are

unlikely to collide.

• Generally want p2 to be about 1/n; then we get a normal

hash table for far (i.e. distance ≥ cr) elements.
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Why Locality-Sensitive Hashing Helps

(101, 37, 65) (103,37,64) (91,84,3) (100,18,79)

0 1 2 3 4

Ideally, close items hash to the same bucket.
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Issue: Low probability of success!

• If we have p2 = 1/n, then p1

We’ll put numbers

on this later

is usually very small.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different

locality-sensitive hash function, and try all of them.
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LSH with Repetitions

(101, 37, 65) (103,37,64) (91,84,3) (100,18,79)

0 1 2 3 4

(101,37,65)

(103,37,64)
(91,84,3) (100,18,79)

0 1 2 3 4

(101, 37, 65) (103,37,64)
(91,84,3)

(100,18,79)

0 1 2 3 4
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Similarity



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



What Do We Mean by “Similar”?

• How can we measure the similarity of objects?

• Images in machine learning: often Euclidean distance (the

distance we’re familiar with on a day-to-day basis)

• What about sets?

• Songs listened to by a user

• Movies watched by a user

• Human-generated tags given to an image

• Words that appear in a document

• Need a way to measure set similarity

16



Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• When are two sets similar?

• Let’s look at our two sets.

Similar if they have a lot of

overlap

• I.e. : lots of artists in

common, compared to total

artists in either list

Very similar!
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Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Ed Sheerhan

Khalid Drake

Drake Travis Scott

Travis Scott Taylor Swift

• When are two sets similar?

• Let’s look at our two sets.

Similar if they have a lot of

overlap

• I.e. : lots of artists in

common, compared to total

artists in either list

Moderately similar
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Jaccard Similarity



Jaccard Similarity

• Similarity measure for sets A and B

• Defined as:
|A ∩ B|
|A ∪ B|

• Intuitively: what fraction of these sets overlaps?
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Jaccard Similarity Intuition 1
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Jaccard Similarity Intuition 2
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Image Search Example
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Jaccard Example 1

User 1 User 2

Post Malone Ariana Grande

Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

• Similarity: |A∩B|/|A∪B|.

• |A ∩ B| = 4

• |A ∪ B| = 5

• Jaccard Similarity: 4/5 = .8

Very similar!
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Set Similarity

User 1 User 2

Post Malone Ariana Grande

Ariana Grande

Khalid
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Set Similarity
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Travis Scott Taylor Swift

• Similarity: |A∩B|/|A∪B|.

• |A ∩ B| = 3

• |A ∪ B| = 7

• Jaccard Similarity:

3/7 = 0.428

Moderately similar
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Jaccard Similarity: Properties

• Works on sets (each dimension is binary—an item is in the

set, or not in the set)

• Always gives a number between 0 and 1

• 1 means identical, 0 means no items in common

• Jaccard similarity ignores items not in either set. So we learn

nothing if neither of us like an artist. (Is this good?)

• Still works if one list is much longer than the other. Generally,

they’ll have small overlap
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Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash

together

• Items with low Jaccard Similarity are UNlikely to hash

together

• Classic method: MinHash

28
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MinHash



MinHash

• Developed by Andrei Broder in 1997 while working at

AltaVista

• (AltaVista was probably the most popular search engine

before Google, they wanted to detect similar web pages to

eliminate them from search results)

• Now used for similarity search, database joins,

clustering—LOTS of things.
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Bit Vectors

• Can represent any set as a vector of bits

• Each bit is an item. ”1” means that that item is in the set,

”0” means it’s not

• So if I’m keeping track of different people’s favorite colors, my

universe may be {red, yellow, blue, green, purple, orange}

• If someone likes red and blue, we can store that information

as 101000.

• Effective if universe is smallish; use a list for larger universe
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Bit Vectors: Jaccard Similarity

• How can we determine A ∩ B?

• This is exactly A & B in C-style notation

• What about A ∪ B?

• This is exactly A | B in C-style notation

• We want the size of these sets—need to count the number of

1s in A & B, or A | B.
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MinHash

• The hash consists of an permutation of all possible items in

the universe

128 in the

assignment

• To hash a set A: find the first item of A in the order given by

the permutation. That item is the hash value!
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MinHash example

• Let’s stick with favorite colors, out of {red, yellow, blue,

green, purple, orange}

• To hash, we randomly permute them. Let’s say our current

hash is given by the permutation (blue, orange, green, purple,

red, yellow)

• First set is 101000 (same as {red, blue}). blue is in the set, so

the hash value is blue.

• Second set is 110010 (we could also write {red, yellow,

purple}). blue is not in the set; nor is orange; nor is green.

purple is, so purple is the hash value

33
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MinHash for Bit Vectors

• On the assignment, have bit vectors of length 128

• To get a hash function, we need a random permutation of the

indices of these bits. That is to say, a random permutation of

{0, 1, 2, . . . , 127}

• To hash an item x , go through the random permutation. Find

the first index i in the list such that the ith bit of x is 1.

• Let’s say x = 10011001, and the permutation is

(1, 5, 2, 0, 7, 6, 4, 3).

For the sake

of space let’s

do 8 bits

• Then the hash of x is 5.
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Analysis of Basic MinHash



Analysis

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore

any item that is not in A or B.

• Look at the first index in the permutation that is in A or B
(i.e. it is in A ∪ B)

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) 6= h(B)

• Any index in A ∪ B is equally likely to be first. If the index is

in A ∩ B, they hash together; otherwise they do not

• Therefore: probability of hashing together is |A ∩ B|/|A ∪ B|.
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MinHash as an LSH

• This means MinHash is an LSH!

• If two items have similarity at least r , they collide with

probability at least r

• If two items have similarity at most cr , they collide with

probability at most cr
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Analysis: Phrased as bit vectors

• What is the probability that h(A) = h(B)?

• Let’s look at the permutation that defines h. We can ignore

any index that is 0 in both A and B.

• Look at the first index in the permutation that is 1 in A or B

• If this index is in both A and B, then h(A) = h(B)

• If this index is in only one of A or B, then h(A) 6= h(B)

• Any index that is 1 in A|B is equally likely to be first. If the

index is in A&B, they hash together; otherwise they do not

• Therefore: probability of hashing together is

(number of 1s in A&B)/(number of 1s in A|B).
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Analysis Example

• Let’s say we have A = {red, blue, green} and B = {red,

orange, purple, green}.

• When do A and B hash together?

• If red or green appears before blue, orange, and purple then

they hash together

• If blue or orange or purple appear before red and green, then

they hash together

• Probability that red or green is first out of {red, blue, green,

orange, purple} is 2/5.

• Therefore, A and B hash together with probability 2/5.
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Making Sure We Find the Close Pair

• To find the close pair, compare all pairs of items that hash to
the same value

• (We’ll talk about how to do this later—it’s similar to

MiniMidterm 1)

• Let’s say our close pair has similarity .5. How many times do

we need to repeat?

• Each repetition has the close pair in the same bucket with

probability .5. So need 2 repetitions in expectation.
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An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in

expectation it takes 1/p iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

• We need to roll a 6-sided die 6 times before we see (say) a

three.

Proof:
∞∑
i=1

ip(1− p)i−1 =
p

(1− (1− p))2
=

1

p

40
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Concatenations and Repetitions



Problems with this Approach

• Buckets are really big!! (After all, lots of items are pretty

likely to have a given bit set.)

• How can we decrease the probability that items hash

together?

• Answer: concatenate multiple hashes together.

41
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Concatenating Hashes

• Rather than one hash h, concatenate k independent hashes

h1, h2, . . . hk , each with its own permutation P1,P2, . . .Pk .

• To hash an item: repeat the process of searching through the

permutation for each hash. Then concatenate the results

together (can just use string concatenation)

• How does this affect the probability for sets A and B?

• For each of the k independent hashes, A and B collide with

probability |A ∩ B|/|A ∪ B|.
• We only obtain the same concatenated hashes if all of the

hashes are the same.

• They are independent, so we can multiply to obtain probability

(|A ∩ B|/|A ∪ B|)k of A and B colliding.
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Concatenation Example

• Let’s say we have A = {red, blue} and B = {red, orange},
and k = 3.

• P1 = {red, green, blue, orange},P2 = {orange, green, blue,

red},P3 = {red, green, blue, orange}

• Let’s hash A.

• First hash: red is in A.

• Second hash: orange not in A, nor is green. Blue is in A.

• Third hash: red is in A.

• Concatenating, we have h(A) = redbluered
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Putting it all Together

• For each hash table, we concatenate k hashes.

• Need to repeat all of that multiple times until we find the

close pair (let’s say we repeat R times)

• So: overall need kR permutations

• What kind of values work for k and R?

45
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Putting it Together: Analysis

• Let’s say we have a set of n items x1, . . . , xn

• The close pair of items has Jaccard similarity 3/4

• Every other pair of items has similarity 1/3

• How should we set k? How many repetitions R is it likely to

take?
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Putting it Together: Analysis (Finding k)

• Non-similar pairs have similarity 1/3

• We want buckets to be small (have O(1) size)

• Look at an element xi . The expected size of the bucket of xi

is
∑

j 6=i (1/3)k (since xi and any xj with j 6= i share a hash

value with probability 1/3k)

• We can then solve (n − 1)(1/3)k = 1 to get k = log3 n − 1.
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Putting it Together: Analysis (Predicting R)

• The similar pair has Jaccard similarity .75

• So they are in the same bucket with probability (.75)k

• We have k = log3 n − 1. So....we need to do some algebra

• (.75)log3 n−1 = 2log(n−1) log(3/4)/ log(3) = (n − 1)log(3/4)/ log(3) ≈
1/n.26

• So we expect about R = n.26 repetitions. That’s a lot!

• But it’s essentially the best we know how to do.
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Practical MinHash Considerations



So many Permutations!

• OK, so kR repetitions is a LOT of preprocessing, and a lot of

random number generation

• And most of this won’t ever be used! Most of the time, when

we hash, we don’t make it more than a few indices into the

permutation.

• Idea: Instead of taking just the first hash item that appears in

the permutation, take the first (say) 3. Concatenate them

together. Then we just need k/3 permutations per hash table

to get similar bounds.

• So let’s say we have A = {black, red, green, blue, orange},
and we’re looking at a permutation P = {purple, red, white,

orange, yellow, blue, green, black}.
• Then A hashes to redorangeblue
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Reducing Permutations

• If you take the k̂ first items when hashing, rather than just

taking the first one, we only need kR/k̂ total permutations.

• Does this affect the analysis?

• Yes; the k we’re concatenating for each hash table are no

longer independent!

• But this works fine in practice (and is used all the time)

50
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Problems with Expectation

• We chose parameters so that buckets are small in expectation

(i.e. on average)

• But: time to process a bucket is quadratic.

• So getting unlucky is super costly!

• What can we do if we happen to get a big bucket?
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Handling Big Buckets

• Recurse!

• Take all items in any really

large bucket, rehash them

into subbuckets

• Might need to repeat

• This option can shave off

small but significant

running time
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Heuristics in Practice

• Practical datasets have some nice structure

• Similar items tend to be really similar

• Tend to appear in clusters

• In practice, can use some simple heuristics in conjunction with

MinHash to perform better

• If there’s enough structure, can use entirely different methods
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Conclusion

• Second video on some ideas for implementing MinHash

• You should watch!
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