Lecture 12: Locality-Sensitive Hashing and
MinHash

Sam McCauley
April 26, 2020

Williams College

Introduction: Finding Similar Items

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.

e But data is still big!

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.
e But data is still big!

e |n particular: high-dimensional

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.
e But data is still big!

e |n particular: high-dimensional

e Table with many columns

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.
e But data is still big!

e |n particular: high-dimensional
e Table with many columns

e For each netflix user, what movies have they seen

Back to Normal Inputs

e Today: no more streaming! Have all data available to us.
e But data is still big!

e |n particular: high-dimensional
e Table with many columns

e For each netflix user, what movies have they seen

e Goal: solve a difficult, but important, problem

Finding Similar Pair

e Given a set of objects

Finding Similar Pair

e Given a set of objects

e Find the most similar pair
of objects in the set

Why Find Similar Objects?

e Find similar news articles for user suggestions.

Why Find Similar Objects?

e Find similar news articles for user suggestions.

e Similar music: Spotify suggests music by finding similar users,
and selecting what they listen to

Why Find Similar Objects?

e Find similar news articles for user suggestions.

e Similar music: Spotify suggests music by finding similar users,
and selecting what they listen to

e Machine learning in general (training, evaluation, actual

algorithms, etc.)

Why Find Similar Objects?

e Find similar news articles for user suggestions.

e Similar music: Spotify suggests music by finding similar users,
and selecting what they listen to

e Machine learning in general (training, evaluation, actual
algorithms, etc.)

e Data deduplication, etc.

Why Find Similar Objects?

e Find similar news articles for user suggestions.

e Similar music: Spotify suggests music by finding similar users,
and selecting what they listen to

e Machine learning in general (training, evaluation, actual
algorithms, etc.)

e Data deduplication, etc.

e “Give me a similar pair in this dataset” is a common query!

Strategies for Similarity Search

First attempt: 1-dimensional data

92
44 e Given a list of numbers

65
60
23
80
67

First attempt: 1-dimensional data

92
44 e Given a list of numbers

7 e “Similarity” is the

65 difference between them
60
23
80
67

First attempt: 1-dimensional data

92

44 e Given a list of numbers

7 e “Similarity” is the

65 difference between them

60 e How can we find the closest
23 numbers (i.e. ones with

80 smallest difference)?

67

First attempt: 1-dimensional data

e How efficiently can we do
this?

First attempt: 1-dimensional data

e How efficiently can we do
23 this?

44
60
65
67
80
92

e Step 1: Sort!

First attempt: 1-dimensional data

/ e How efficiently can we do

23 this?

= e Step 1: Sort!

60 .

65 e Step 2: Scan through list,

= find most similar adjacent
elements.

80

92

First attempt: 1-dimensional data

/ e How efficiently can we do

23 this?

= e Step 1: Sort!

60 .

= e Step 2: Scan through list,

57 find most similar adjacent
elements.

80

0 e O(nlogn) time

First attempt: 1-dimensional data

(S
Aside: can we do better? Yes, there’s a 5n we do

clever O(n) algorithm based on

sampling.
60 o _
65 e Step 2: Scan through list,
57 find most similar adjacent
elements.
80
9 e O(nlogn) time

Two-dimensional Data?

° ° .
® e You likely saw this in CS
° . 256.
°
[]
°
e ©
[e o

Two-dimensional Data?

° ° .
L e You likely saw this in CS
° o 256.
° ® ¢+ Divide and conquer,
... O(nlog n) time.
o ® ° o

Two-dimensional Data?

e o g
L e You likely saw this in CS
° ¢ 256.
° ® ¢+ Divide and conquer,
... O(nlog n) time.
o ® ° o e (Again, possible in O(n))

What About Higher Dimensions?

e We want VERY high dimensions (millions)

What About Higher Dimensions?

e We want VERY high dimensions (millions)

e Songs listened to, movies watched, image tags, etc.

What About Higher Dimensions?

e We want VERY high dimensions (millions)

e Songs listened to, movies watched, image tags, etc.

e Words that appear in a book, k-grams that appear in a DNA
sequence

What About Higher Dimensions?

We want VERY high dimensions (millions)

Songs listened to, movies watched, image tags, etc.

Words that appear in a book, k-grams that appear in a DNA
sequence

Classic options: quad trees, kd trees

How Efficient are High-dimensional Algorithms?

I P H
o o T u
il T | e O(nlog n) for constant
arIcIs & = dimensions
FEEH S [N b
I I 1T N |
e H
sIRINE:=cs s 1.
piel ¥ Lo B .

How Efficient are High-dimensional Algorithms?

kaMlanat i Rnnunia
o o T u
il 1 T | e O(nlog n) for constant
o . B o dimensions
e But: exponential in
dimension!
FERH L N b
o T T
° ° b _?7 b—o—
SR ECs ~H 1.
e ¥ Hel b aE .

How Efficient are High-dimensional Algorithms?

i Mlannii P
o o T u
smer] o = T | e O(nlog n) for constant
o . B o dimensions
e But: exponential in
dimension!
e mny H ° Worse than trying all pairs
e FH Y i . if > log n dimensions
TR | T
e ¥ Hel b aE .

Curse of Dimensionality

e Many problems have running time exponential in the
dimension of the objects.

Curse of Dimensionality

e Many problems have running time exponential in the
dimension of the objects.

e Well-known phenomenon

Curse of Dimensionality

e Many problems have running time exponential in the

dimension of the objects.
e Well-known phenomenon

e Applies to similarity search, machine learning, combinatorics

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

10

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

e Linear cost in terms of dimension (but expensive in terms of
the problem size).

10

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

e Linear cost in terms of dimension (but expensive in terms of
the problem size).

e Two tools to get us there:

10

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

e Linear cost in terms of dimension (but expensive in terms of
the problem size).

e Two tools to get us there:

e Assume that the close pair is much closer than any other
(approximate closest pair)

10

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

e Linear cost in terms of dimension (but expensive in terms of
the problem size).

We'll come back

e Two tools to get us there: ,
to this later

e Assume that the close pair is much _clesér than any other
(approximate closest pair)

10

Avoiding the Curse of Dimensionality

e Today we're talking about how to get efficient algorithms for
arbitrarily large dimensions.

e Linear cost in terms of dimension (but expensive in terms of
the problem size).

We'll come back

e Two tools to get us there: ,
to this later

e Assume that the close pair is much _clesér than any other
(approximate closest pair)

e Use hashing! ...A special kind of hashing

10

Locality-Sensitive Hashing

Locality-Sensitive Hashing

e Normally, hashing spreads out elements.

11

Locality-Sensitive Hashing

e Normally, hashing spreads out elements.

e This is key to hashing: no matter how clustered my data
begins, | wind up with a nicely-distributed hash table

11

Locality-Sensitive Hashing

e Normally, hashing spreads out elements.

e This is key to hashing: no matter how clustered my data
begins, | wind up with a nicely-distributed hash table

e Locality-sensitive hashing tries to hash similar items together

11

Locality-Sensitive Hashing: Formal Definition

e Needs a similarity threshold r, an approximation factor ¢ < 1

12

Locality-Sensitive Hashing: Formal Definition

e Needs a similarity threshold r, an approximation factor ¢ < 1

e Two guarantees:

12

Locality-Sensitive Hashing: Formal Definition

e Needs a similarity threshold r, an approximation factor ¢ < 1
e Two guarantees:

e If two items x and y have similarity > r, h(x) = h(y) with
probability at least p;.

12

Locality-Sensitive Hashing: Formal Definition

e Needs a similarity threshold r, an approximation factor ¢ < 1

e Two guarantees:

e If two items x and y have similarity > r, h(x) = h(y) with
probability at least p;.

e If two items x and y have similarity < cr, h(x) = h(y) with
probability at most p».

12

Locality-Sensitive Hashing: Formal Definition

e Needs a similarity threshold r, an approximation factor ¢ < 1

e Two guarantees:

e If two items x and y have similarity > r, h(x) = h(y) with
probability at least p;.

e If two items x and y have similarity < cr, h(x) = h(y) with
probability at most p».

e High level: close items are likely to collide. Far items are
unlikely to collide.

12

Locality-Sensitive Hashing: Formal Definition

e Needs a similarity threshold r, an approximation factor ¢ < 1
e Two guarantees:
e If two items x and y have similarity > r, h(x) = h(y) with
probability at least p;.
e If two items x and y have similarity < cr, h(x) = h(y) with
probability at most p».
e High level: close items are likely to collide. Far items are
unlikely to collide.
e Generally want p, to be about 1/n; then we get a normal

hash table for far (i.e. distance > cr) elements.

12

Why Locality-Sensitive Hashing Helps

| | (101, 37, 65) (103,37,64) | (91,84,3) | | (100,18,79) |
0 1 2 3 4

Ideally, close items hash to the same bucket.

13

Issue: Low probability of success!

e If we have pp = 1/n, then p; is usually very small.

14

Issue: Low probability of success!

We'll put numbers

on this later

e If we have pp = 1/n, then p; isTUsually very small.

e How can we increase this probability?

14

Issue: Low probability of success!

e If we have pp = 1/n, then p; is usually very small.
e How can we increase this probability?

e Repetitions! Maintain many hash tables, each with a different
locality-sensitive hash function, and try all of them.

14

LSH with Repetitions

(101, 37, 65) | (103,37,64) (91,84,3) (100,18,79)
0 1 2 3 4
(101,37,65)
. (91,84,3) (100,18,79)
0 1 2 3 4
(91,84,3)
(101, 37, 65) (103,37,64) G
0 1 2 3 4

ii5)

Similarity

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user

e Movies watched by a user

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user
e Movies watched by a user

e Human-generated tags given to an image

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user
e Movies watched by a user

e Human-generated tags given to an image

Words that appear in a document

16

What Do We Mean by “Similar”?

e How can we measure the similarity of objects?

e Images in machine learning: often Euclidean distance (the
distance we're familiar with on a day-to-day basis)

e What about sets?

e Songs listened to by a user
e Movies watched by a user

e Human-generated tags given to an image

Words that appear in a document

e Need a way to measure set similarity

16

Set Similarity

e When are two sets similar?

User 1 User 2
Post Malone | Ariana Grande
Ariana Grande Khalid
Khalid Drake
Drake Travis Scott
Travis Scott

17

Set Similarity

e When are two sets similar?

User 1 User 2
Let’s look at t ts.
Post Malone | Ariana Grande ¢ .e s O(_) at our two sets
: - Similar if they have a lot of
Ariana Grande Khalid
- overlap

Khalid Drake

Drake Travis Scott
Travis Scott

17

Set Similarity

User 1 User 2
Post Malone | Ariana Grande
Ariana Grande Khalid

Khalid Drake

Drake Travis Scott

Travis Scott

e When are two sets similar?

e Let's look at our two sets.
Similar if they have a lot of
overlap

e |.e. : lots of artists in
common, compared to total
artists in either list

17

Set Similarity

e When are two sets similar?

User 1 User 2

Post Malone | Ariana Grande

e Let's look at our two sets.

, Similar if they have a lot of
Ariana Grande

Khalid
Drake e |.e. : lots of artists in

overlap

5 common, compared to total
Travis Scott ' P

artists in either list

18

Set Similarity

Not very similar!

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Khalid

Drake

Travis Scott

e When are two sets similar?

e Let's look at our two sets.
Similar if they have a lot of
overlap

e |.e. : lots of artists in
common, compared to total
artists in either list

18

Set Similarity

e When are two sets similar?

User 1 User 2
Post Malone | Ariana Grande
Ariana Grande | Ed Sheerhan
Khalid Drake
Drake Travis Scott
Travis Scott Taylor Swift

e Let's look at our two sets.

Similar if they have a lot of

overlap

e |.e. : lots of artists in

common, compared to total

artists in either list

19

Set Similarity

Moderately similar

User 1

User 2

Post Malone

Ariana Grande

Ariana Grande

Ed Sheerhan

Khalid Drake
Drake Travis Scott
Travis Scott Taylor Swift

e When are two sets similar?

e Let's look at our two sets.
Similar if they have a lot of
overlap

e |.e. : lots of artists in
common, compared to total
artists in either list

19

Jaccard Similarity

Jaccard Similarity

e Similarity measure for sets A and B

20

Jaccard Similarity

e Similarity measure for sets A and B

e Defined as:
|AN B|

|AU B|

20

Jaccard Similarity

e Similarity measure for sets A and B

e Defined as:
|AN B|

|AU B|

e Intuitively: what fraction of these sets overlaps?

20

Jaccard Similarity Intuition 1

loU: 0.4034 loU: 0.7330 loU: 0.9264

Poor Good Excellent

21

Jaccard Similarity Intuition 2

Area of Overlap

loU =

Area of Union

22

Image Search Example

23

Jaccard Example 1

e e e Similarity: AN B|/|AUB|.
Post Malone | Ariana Grande
Ariana Grande Khalid
Khalid Drake
Drake Travis Scott
Travis Scott

24

Jaccard Example 1

s 1 User2 | | Similarity: |ANBI/|AUB].
Post Malone | Ariana Grande .« JANB| =4
Ariana Grande Khalid

Khalid Drake

Drake Travis Scott
Travis Scott

24

Jaccard Example 1

s 1 User2 | | Similarity: |ANBI/|AUB].
Post Malone | Ariana G-rande .« JANB| =4
Ariana Grande Khalid
Khalid Drake * [AVB|I=5
Drake Travis Scott
Travis Scott

24

Jaccard Example 1

s 1 User2 | | Similarity: |ANBI/|AUB].
Post Malone | Ariana Grande .« JANB| =4
Ariana Grande Khalid
Khalid Drele o puE =8
Drake T Saa e Jaccard Similarity: 4/5 = .8
Travis Scott

24

Set Similarity

User 1 User 2

Post Malone | Ariana Grande

e Similarity: |ANBJ|/|AUB|.

Ariana Grande
Khalid
Drake

Travis Scott

25

Set Similarity

User 1 User 2

Post Malone | Ariana Grande

‘ e Similarity: |ANBJ|/|AUB|.
e [ANB|=1

Ariana Grande
Khalid
Drake

Travis Scott

25

Set Similarity

User 1

User 2

Post Malone

Ariana Grande

‘ e Similarity: |ANBJ|/|AUB|.

Ariana Grande

° ‘AﬂB|:1

Khalid

e |JAUB|=5

Drake

Travis Scott

25

Set Similarity

e User2 | | Similarity: |ANBI/|AUB].
Post Malone | Ariana Grande .« |ANB|=1
Ariana Grande

Khalid 2 A =2

Drake e Jaccard Similarity: 1/5 = .2
Travis Scott

25

Set Similarity

Usen'T User 2 o Similarity: |ANB|/|AUB].
Post Malone | Ariana Grande

Ariana Grande | Ed Sheerhan
Khalid Drake
Drake Travis Scott

Travis Scott Taylor Swift

26

Set Similarity

User 1 User 2 ‘ e Similarity: |ANBJ|/|AUB|.
Post Malone | Ariana Grande | IANB| =3

Ariana Grande | Ed Sheerhan
Khalid Drake
Drake Travis Scott

Travis Scott Taylor Swift

26

Set Similarity

User 1

User 2

‘ e Similarity: |[ANB|/|AUB.

Post Malone

Ariana Grande

e [ANB|=3

Ariana Grande

Ed Sheerhan

o [AUB|=7

Khalid Drake
Drake Travis Scott
Travis Scott Taylor Swift

26

Set Similarity

User 1 User 2 ‘ Similarity: |ANB|/|AUB].
Post Malone | Ariana Grande IANB| =3

Ariana Grande | Ed Sheerhan

AUB| =7
Khalid Drake * |[AUB]

Drake Tk Saati: e Jaccard Similarity:
Travis Scott Taylor Swift 3/7=10.428

26

Jaccard Similarity: Properties

e Works on sets (each dimension is binary—an item is in the
set, or not in the set)

27

Jaccard Similarity: Properties

e Works on sets (each dimension is binary—an item is in the
set, or not in the set)

e Always gives a number between 0 and 1

27

Jaccard Similarity: Properties

e Works on sets (each dimension is binary—an item is in the
set, or not in the set)

e Always gives a number between 0 and 1

e 1 means identical, 0 means no items in common

27

Jaccard Similarity: Properties

Works on sets (each dimension is binary—an item is in the
set, or not in the set)

Always gives a number between 0 and 1

1 means identical, 0 means no items in common

Jaccard similarity ignores items not in either set. So we learn
nothing if neither of us like an artist. (Is this good?)

27

Jaccard Similarity: Properties

Works on sets (each dimension is binary—an item is in the
set, or not in the set)

Always gives a number between 0 and 1
1 means identical, 0 means no items in common

Jaccard similarity ignores items not in either set. So we learn
nothing if neither of us like an artist. (Is this good?)

Still works if one list is much longer than the other. Generally,
they'll have small overlap

27

Locality-Sensitive Hash for Jaccard Similarity

e Want: items with high Jaccard Similarity are likely to hash
together

28

Locality-Sensitive Hash for Jaccard Similarity

e Want: items with high Jaccard Similarity are likely to hash
together

e Items with low Jaccard Similarity are UNlikely to hash
together

28

Locality-Sensitive Hash for Jaccard Similarity

e Want: items with high Jaccard Similarity are likely to hash
together

e Items with low Jaccard Similarity are UNlikely to hash
together

e Classic method: MinHash

28

MinHash

e Developed by Andrei Broder in 1997 while working at
AltaVista

29

e Developed by Andrei Broder in 1997 while working at
AltaVista

e (AltaVista was probably the most popular search engine
before Google, they wanted to detect similar web pages to
eliminate them from search results)

29

e Developed by Andrei Broder in 1997 while working at
AltaVista

e (AltaVista was probably the most popular search engine
before Google, they wanted to detect similar web pages to

eliminate them from search results)

e Now used for similarity search, database joins,
clustering—LOTS of things.

29

Bit Vectors

e Can represent any set as a vector of bits

30

Bit Vectors

e Can represent any set as a vector of bits

e Each bit is an item. "1" means that that item is in the set,

"0" means it's not

30

Bit Vectors

e Can represent any set as a vector of bits

e Each bit is an item. "1" means that that item is in the set,

"0" means it's not

e So if I'm keeping track of different people's favorite colors, my
universe may be {red, yellow, blue, green, purple, orange}

30

Bit Vectors

e Can represent any set as a vector of bits

Each bit is an item. "1" means that that item is in the set,

"0" means it's not

e So if I'm keeping track of different people's favorite colors, my
universe may be {red, yellow, blue, green, purple, orange}

e |f someone likes red and blue, we can store that information
as 101000.

30

Bit Vectors

e Can represent any set as a vector of bits

Each bit is an item. "1" means that that item is in the set,

"0" means it's not

e So if I'm keeping track of different people's favorite colors, my
universe may be {red, yellow, blue, green, purple, orange}

e |f someone likes red and blue, we can store that information
as 101000.

e Effective if universe is smallish; use a list for larger universe

30

Bit Vectors: Jaccard Similarity

e How can we determine AN B?

31

Bit Vectors: Jaccard Similarity

e How can we determine AN B?

e This is exactly A & B in C-style notation

31

Bit Vectors: Jaccard Similarity

e How can we determine AN B?

e This is exactly A & B in C-style notation

e What about AU B?

31

Bit Vectors: Jaccard Similarity

e How can we determine AN B?

e This is exactly A & B in C-style notation

e What about AU B?

e This is exactly A | B in C-style notation

31

Bit Vectors: Jaccard Similarity

e How can we determine AN B?

e This is exactly A & B in C-style notation

e What about AU B?

e This is exactly A | B in C-style notation

e We want the size of these sets—need to count the number of
1sin A& B, or A|B.

31

e The hash consists of an permutation of all possible items in
the universe

32

128 in the
assignment

e The hash consists of anpg&mutation of all possible items in

the universe

e To hash a set A: find the first item of A in the order given by
the permutation. That item is the hash value!

32

MinHash example

e Let's stick with favorite colors, out of {red, yellow, blue,
green, purple, orange}

33

MinHash example

e Let's stick with favorite colors, out of {red, yellow, blue,
green, purple, orange}

e To hash, we randomly permute them. Let’s say our current
hash is given by the permutation (blue, orange, green, purple,
red, yellow)

33

MinHash example

e Let's stick with favorite colors, out of {red, yellow, blue,

green, purple, orange}

e To hash, we randomly permute them. Let’s say our current
hash is given by the permutation (blue, orange, green, purple,

red, yellow)

e First set is 101000 (same as {red, blue}). blue is in the set, so

the hash value is blue.

33

MinHash example

e Let's stick with favorite colors, out of {red, yellow, blue,
green, purple, orange}

e To hash, we randomly permute them. Let’s say our current
hash is given by the permutation (blue, orange, green, purple,
red, yellow)

e First set is 101000 (same as {red, blue}). blue is in the set, so
the hash value is blue.

e Second set is 110010 (we could also write {red, yellow,
purple}). blue is not in the set; nor is orange; nor is green.
purple is, so purple is the hash value

33

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

34

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

e To get a hash function, we need a random permutation of the
indices of these bits. That is to say, a random permutation of
{0,1,2,...,127}

34

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

e To get a hash function, we need a random permutation of the
indices of these bits. That is to say, a random permutation of
{0,1,2,...,127}

e To hash an item x, go through the random permutation. Find
the first index 7 in the list such that the ith bit of x is 1.

34

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

e To get a hash function, we need a random permutation of the
indices of these bits. That is to say, a random permutation of
{0,1,2,...,127}

e To hash an item x, go through the random permutation. Find
the first index 7 in the list such that the ith bit of x is 1.

e let's say x = 10011001, and the permutation is
(17 5? 2’ 0’ 7’ 67 47 3)

34

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

e To get a hash function, we need a random permutation of the
indices of these bits. That is to say, a random permutation of
{0,1,2,...,127}

e To hash an item x, go through the For the sake . Find

the first index 7 in the list such tha TSI N S
e Let's say x = 10011001, ang .do_8 ol
(17 57 2’ 0’ 7’ 6’ 47 3)

34

MinHash for Bit Vectors

e On the assignment, have bit vectors of length 128

e To get a hash function, we need a random permutation of the
indices of these bits. That is to say, a random permutation of
{0,1,2,...,127}

e To hash an item x, go through the random permutation. Find
the first index 7 in the list such that the ith bit of x is 1.

e let's say x = 10011001, and the permutation is
(17 5? 2’ 0’ 7’ 67 47 3)

e Then the hash of x is 5.

34

Analysis of Basic MinHash

e What is the probability that h(A) = h(B)?

85

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

85

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

e Look at the first index in the permutation that is in A or B
(i.e. itisin AUB)

85

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

e Look at the first index in the permutation that is in A or B
(i.e. itisin AUB)

e If this index is in both A and B, then h(A) = h(B)

85

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

e Look at the first index in the permutation that is in A or B
(i.e. itisin AUB)

e If this index is in both A and B, then h(A) = h(B)
e If this index is in only one of A or B, then h(A) # h(B)

85

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

e Look at the first index in the permutation that is in A or B
(i.e. itisin AUB)

e If this index is in both A and B, then h(A) = h(B)
e If this index is in only one of A or B, then h(A) # h(B)

e Any index in AU B is equally likely to be first. If the index is
in AN B, they hash together; otherwise they do not

85

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any item that is not in A or B.

e Look at the first index in the permutation that is in A or B
(i.e. itisin AUB)

e If this index is in both A and B, then h(A) = h(B)
e If this index is in only one of A or B, then h(A) # h(B)

e Any index in AU B is equally likely to be first. If the index is
in AN B, they hash together; otherwise they do not

e Therefore: probability of hashing together is |[AN B|/|AU B).

85

MinHash as an LSH

e This means MinHash is an LSH!

36

MinHash as an LSH

e This means MinHash is an LSH!

e If two items have similarity at least r, they collide with
probability at least r

36

MinHash as an LSH

e This means MinHash is an LSH!

e If two items have similarity at least r, they collide with
probability at least r

e If two items have similarity at most cr, they collide with
probability at most cr

36

Analysis: Phrased as bit vectors

e What is the probability that h(A) = h(B)?

e Let's look at the permutation that defines h. We can ignore
any index that is 0 in both A and B.
e Look at the first index in the permutation thatis 1 in A or B

e If this index is in both A and B, then h(A) = h(B)
e If this index is in only one of A or B, then h(A) # h(B)

e Any index that is 1 in A|B is equally likely to be first. If the
index is in A&B, they hash together; otherwise they do not

e Therefore: probability of hashing together is
(number of 1s in A&B)/(number of 1s in A|B).

37

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

38

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

e When do A and B hash together?

38

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

e When do A and B hash together?

e If red or green appears before blue, orange, and purple then
they hash together

38

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

e When do A and B hash together?

e If red or green appears before blue, orange, and purple then
they hash together

e If blue or orange or purple appear before red and green, then
they hash together

38

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

e When do A and B hash together?

e If red or green appears before blue, orange, and purple then
they hash together

e |f blue or orange or purple appear before red and green, then
they hash together

e Probability that red or green is first out of {red, blue, green,
orange, purple} is 2/5.

38

Analysis Example

e Let's say we have A = {red, blue, green} and B = {red,
orange, purple, green}.

e When do A and B hash together?

e If red or green appears before blue, orange, and purple then
they hash together

e |f blue or orange or purple appear before red and green, then
they hash together

e Probability that red or green is first out of {red, blue, green,
orange, purple} is 2/5.

e Therefore, A and B hash together with probability 2/5.

38

Making Sure We Find the Close Pair

e To find the close pair, compare all pairs of items that hash to
the same value

39

Making Sure We Find the Close Pair

e To find the close pair, compare all pairs of items that hash to
the same value

e (We'll talk about how to do this later—it's similar to
MiniMidterm 1)

39

Making Sure We Find the Close Pair

e To find the close pair, compare all pairs of items that hash to
the same value

e (We'll talk about how to do this later—it's similar to
MiniMidterm 1)

e let's say our close pair has similarity .5. How many times do

we need to repeat?

39

Making Sure We Find the Close Pair

e To find the close pair, compare all pairs of items that hash to
the same value

e (We'll talk about how to do this later—it's similar to
MiniMidterm 1)

e let's say our close pair has similarity .5. How many times do
we need to repeat?

e Each repetition has the close pair in the same bucket with
probability .5. So need 2 repetitions in expectation.

39

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in
expectation it takes 1/p iterations of the process before success.

Examples:

40

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in
expectation it takes 1/p iterations of the process before success.

Examples:

e It takes two coin flips in expectation before we see a heads

40

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in
expectation it takes 1/p iterations of the process before success.

Examples:

e It takes two coin flips in expectation before we see a heads

e We need to roll a 6-sided die 6 times before we see (say) a
three.

40

An Aside on Expectation

Lemma 1

If a random process succeeds with probability p, then in
expectation it takes 1/p iterations of the process before success.

Examples:

e It takes two coin flips in expectation before we see a heads

e We need to roll a 6-sided die 6 times before we see (say) a
three.

Proof:

N ip(l-p) = P = L

2 A—G—p)2 b

40

Concatenations and Repetitions

Problems with this Approach

e Buckets are really big!! (After all, lots of items are pretty
likely to have a given bit set.)

41

Problems with this Approach

e Buckets are really big!! (After all, lots of items are pretty
likely to have a given bit set.)

e How can we decrease the probability that items hash
together?

41

Problems with this Approach

e Buckets are really big!! (After all, lots of items are pretty
likely to have a given bit set.)

e How can we decrease the probability that items hash
together?

e Answer: concatenate multiple hashes together.

41

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, hy, ... hg, each with its own permutation Py, Ps, ... Pk.

42

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, hy, ... hg, each with its own permutation Py, Ps, ... Pk.

e To hash an item: repeat the process of searching through the
permutation for each hash. Then concatenate the results

together (can just use string concatenation)

42

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, hy, ... hg, each with its own permutation Py, Ps, ... Pk.

e To hash an item: repeat the process of searching through the
permutation for each hash. Then concatenate the results
together (can just use string concatenation)

e How does this affect the probability for sets A and B?

42

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, hy, ... hg, each with its own permutation Py, Ps, ... Pk.

e To hash an item: repeat the process of searching through the
permutation for each hash. Then concatenate the results
together (can just use string concatenation)

e How does this affect the probability for sets A and B?

e For each of the k independent hashes, A and B collide with
probability |AN B|/|AU B.

42

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, hy, ... hg, each with its own permutation Py, Ps, ... Pk.

e To hash an item: repeat the process of searching through the
permutation for each hash. Then concatenate the results
together (can just use string concatenation)

e How does this affect the probability for sets A and B?

e For each of the k independent hashes, A and B collide with
probability |AN B|/|AU B.

e We only obtain the same concatenated hashes if all of the
hashes are the same.

42

Concatenating Hashes

e Rather than one hash h, concatenate k independent hashes
h1, hy, ... hg, each with its own permutation Py, Ps, ... Pk.

e To hash an item: repeat the process of searching through the
permutation for each hash. Then concatenate the results
together (can just use string concatenation)

e How does this affect the probability for sets A and B?

e For each of the k independent hashes, A and B collide with
probability |[AN B|/|AU B].

e We only obtain the same concatenated hashes if all of the
hashes are the same.

e They are independent, so we can multiply to obtain probability
(JAN B|/|AU B|) of A and B colliding.

42

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash A.

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash A.

e First hash: red is in A.

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash A.

e First hash: red is in A.

e Second hash: orange not in A, nor is green. Blue is in A.

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange},P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}
e Let's hash A.
e First hash: red is in A.
e Second hash: orange not in A, nor is green. Blue is in A.

e Third hash: red is in A.

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash A.

e First hash: red is in A.
e Second hash: orange not in A, nor is green. Blue is in A.

e Third hash: red is in A.

e Concatenating, we have h(A) = redbluered

43

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

44

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash B.

44

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash B.

e First hash: red is in B.

44

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash B.

e First hash: red is in B.

e Second hash: orange is in B.

44

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange},P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}
e Let's hash B.
e First hash: red is in B.
e Second hash: orange is in B.

e Third hash: red is in B.

44

Concatenation Example

e Let's say we have A = {red, blue} and B = {red, orange},
and k = 3.

e P; = {red, green, blue, orange}, P, = {orange, green, blue,
red},P3 = {red, green, blue, orange}

e Let's hash B.

e First hash: red is in B.
e Second hash: orange is in B.

e Third hash: red is in B.

e Concatenating, we have h(B) = redorangered

44

Putting it all Together

e For each hash table, we concatenate k hashes.

45

Putting it all Together

e For each hash table, we concatenate k hashes.

e Need to repeat all of that multiple times until we find the
close pair (let's say we repeat R times)

45

Putting it all Together

e For each hash table, we concatenate k hashes.

e Need to repeat all of that multiple times until we find the
close pair (let's say we repeat R times)

e So: overall need kR permutations

45

Putting it all Together

For each hash table, we concatenate k hashes.

Need to repeat all of that multiple times until we find the
close pair (let's say we repeat R times)

So: overall need kR permutations

What kind of values work for k and R?

45

Putting it Together: Analysis

e Let's say we have a set of nitems xq,..., X,

46

Putting it Together: Analysis

e Let's say we have a set of nitems xq,..., X,

e The close pair of items has Jaccard similarity 3/4

46

Putting it Together: Analysis

e Let's say we have a set of nitems xq,..., X,
e The close pair of items has Jaccard similarity 3/4

e Every other pair of items has similarity 1/3

46

Putting it Together: Analysis

Let's say we have a set of n items xi,...,x,

The close pair of items has Jaccard similarity 3/4

Every other pair of items has similarity 1/3

How should we set k? How many repetitions R is it likely to
take?

46

Putting it Together: Analysis (Finding k)

e Non-similar pairs have similarity 1/3

47

Putting it Together: Analysis (Finding k)

e Non-similar pairs have similarity 1/3

e We want buckets to be small (have O(1) size)

47

Putting it Together: Analysis (Finding k)

e Non-similar pairs have similarity 1/3
e We want buckets to be small (have O(1) size)
e Look at an element x;. The expected size of the bucket of x;

is #,(1/3)" (since x; and any x; with j ## i share a hash
value with probability 1/3)

47

Putting it Together: Analysis (Finding k)

Non-similar pairs have similarity 1/3

We want buckets to be small (have O(1) size)
e Look at an element x;. The expected size of the bucket of x;
is #,(1/3)" (since x; and any x; with j ## i share a hash

value with probability 1/3)

We can then solve (n — 1)(1/3)% =1 to get k = loggn — 1.

47

Putting it Together: Analysis (Predicting R)

e The similar pair has Jaccard similarity .75

48

Putting it Together: Analysis (Predicting R)

e The similar pair has Jaccard similarity .75

e So they are in the same bucket with probability (.75)*

48

Putting it Together: Analysis (Predicting R)

e The similar pair has Jaccard similarity .75
e So they are in the same bucket with probability (.75)*

e We have k =logzn — 1. So....we need to do some algebra

48

Putting it Together: Analysis (Predicting R)

The similar pair has Jaccard similarity .75

So they are in the same bucket with probability (.75)*

We have k = logz n — 1. So....we need to do some algebra

(.75)|og3 n—1 _ olog(n—1)log(3/4)/ log(3) — (n _ 1)|0g(3/4)/|og(3) ~
1/n.26

48

Putting it Together: Analysis (Predicting R)

The similar pair has Jaccard similarity .75

So they are in the same bucket with probability (.75)*

We have k = logz n — 1. So....we need to do some algebra

(.75)|og3 n—1 _ olog(n—1)log(3/4)/ log(3) — (n _ 1)|0g(3/4)/|og(3) ~
1/n.26

e So we expect about R = n'?% repetitions. That's a lot!

48

Putting it Together: Analysis (Predicting R)

The similar pair has Jaccard similarity .75

So they are in the same bucket with probability (.75)*

We have k = logz n — 1. So....we need to do some algebra

(.75)|og3 n—1 _ olog(n—1)log(3/4)/ log(3) — (n _ 1)|0g(3/4)/|og(3) ~
1/n.26

e So we expect about R = n'?% repetitions. That's a lot!

But it's essentially the best we know how to do.

48

Practical MinHash Considerations

So many Permutations!

e OK, so kR repetitions is a LOT of preprocessing, and a lot of
random number generation

49

So many Permutations!

e OK, so kR repetitions is a LOT of preprocessing, and a lot of
random number generation

e And most of this won't ever be used! Most of the time, when
we hash, we don't make it more than a few indices into the
permutation.

49

So many Permutations!

e OK, so kR repetitions is a LOT of preprocessing, and a lot of
random number generation

e And most of this won't ever be used! Most of the time, when
we hash, we don't make it more than a few indices into the
permutation.

e Idea: Instead of taking just the first hash item that appears in
the permutation, take the first (say) 3. Concatenate them
together. Then we just need k/3 permutations per hash table
to get similar bounds.

49

So many Permutations!

e OK, so kR repetitions is a LOT of preprocessing, and a lot of
random number generation

e And most of this won't ever be used! Most of the time, when
we hash, we don't make it more than a few indices into the
permutation.

e Idea: Instead of taking just the first hash item that appears in
the permutation, take the first (say) 3. Concatenate them
together. Then we just need k/3 permutations per hash table
to get similar bounds.

e So let's say we have A = {black, red, green, blue, orange},
and we're looking at a permutation P = {purple, red, white,

orange, yellow, blue, green, black}.

49

So many Permutations!

OK, so kR repetitions is a LOT of preprocessing, and a lot of
random number generation

And most of this won't ever be used! Most of the time, when
we hash, we don't make it more than a few indices into the
permutation.

Idea: Instead of taking just the first hash item that appears in
the permutation, take the first (say) 3. Concatenate them
together. Then we just need k/3 permutations per hash table
to get similar bounds.

So let's say we have A = {black, red, green, blue, orange},
and we're looking at a permutation P = {purple, red, white,
orange, yellow, blue, green, black}.

Then A hashes to redorangeblue

49

Reducing Permutations

e If you take the k first items when hashing, rather than just
taking the first one, we only need kR/l? total permutations.

50

Reducing Permutations

e If you take the k first items when hashing, rather than just
taking the first one, we only need kR/l? total permutations.

e Does this affect the analysis?

50

Reducing Permutations

e If you take the k first items when hashing, rather than just
taking the first one, we only need kR/l? total permutations.

e Does this affect the analysis?

e Yes; the k we're concatenating for each hash table are no
longer independent!

50

Reducing Permutations

e If you take the k first items when hashing, rather than just
taking the first one, we only need kR/l? total permutations.

e Does this affect the analysis?

e Yes; the k we're concatenating for each hash table are no
longer independent!

e But this works fine in practice (and is used all the time)

50

Problems with Expectation

e We chose parameters so that buckets are small in expectation
(i.e. on average)

Bl

Problems with Expectation

e We chose parameters so that buckets are small in expectation
(i.e. on average)

e But: time to process a bucket is quadratic.

Bl

Problems with Expectation

e We chose parameters so that buckets are small in expectation
(i.e. on average)

e But: time to process a bucket is quadratic.

e So getting unlucky is super costly!

Bl

Problems with Expectation

We chose parameters so that buckets are small in expectation

(i.e. on average)

e But: time to process a bucket is quadratic.

So getting unlucky is super costly!

What can we do if we happen to get a big bucket?

Bl

Handling Big Buckets

52

Handling Big Buckets

o Recurse!

52

Handling Big Buckets

o Recurse!

e Take all items in any really
large bucket, rehash them
’ I I I I ‘ into subbuckets

52

Handling Big Buckets

o Recurse!

e Take all items in any really
large bucket, rehash them
’ I I I I ‘ into subbuckets

’ | ‘ ’ | ‘ e Might need to repeat

52

Handling Big Buckets

Recurse!

Take all items in any really
large bucket, rehash them
into subbuckets

Might need to repeat

This option can shave off
small but significant

running time

52

Heuristics in Practice

e Practical datasets have some nice structure

53

Heuristics in Practice

e Practical datasets have some nice structure

e Similar items tend to be really similar

53

Heuristics in Practice

e Practical datasets have some nice structure

e Similar items tend to be really similar

e Tend to appear in clusters

53

Heuristics in Practice

e Practical datasets have some nice structure

e Similar items tend to be really similar

e Tend to appear in clusters

e In practice, can use some simple heuristics in conjunction with
MinHash to perform better

53

Heuristics in Practice

e Practical datasets have some nice structure

e Similar items tend to be really similar

e Tend to appear in clusters

e In practice, can use some simple heuristics in conjunction with
MinHash to perform better

e If there's enough structure, can use entirely different methods

53

Conclusion

e Second video on some ideas for implementing MinHash

54

Conclusion

e Second video on some ideas for implementing MinHash

e You should watch!

54

	Introduction: Finding Similar Items
	Strategies for Similarity Search
	Locality-Sensitive Hashing
	Similarity
	Jaccard Similarity
	MinHash
	Analysis of Basic MinHash
	Concatenations and Repetitions
	Practical MinHash Considerations

