Lecture 12: Locality-Sensitive Hashing and MinHash

Sam McCauley April 26, 2020

Williams College

Introduction: Finding Similar Items

• Today: no more streaming! Have all data available to us.

- Today: no more streaming! Have all data available to us.
- But data is still big!

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional
 - Table with many columns

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional
 - Table with many columns
 - For each netflix user, what movies have they seen

- Today: no more streaming! Have all data available to us.
- But data is still big!
 - In particular: high-dimensional
 - Table with many columns
 - For each netflix user, what movies have they seen
- Goal: solve a difficult, but important, problem

Finding Similar Pair

• Given a set of objects

Finding Similar Pair

- Given a set of objects
- Find the most similar pair of objects in the set

• Find similar news articles for user suggestions.

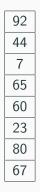
- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)
- Data deduplication, etc.

- Find similar news articles for user suggestions.
- Similar music: Spotify suggests music by finding similar users, and selecting what they listen to
- Machine learning in general (training, evaluation, actual algorithms, etc.)
- Data deduplication, etc.
- "Give me a similar pair in this dataset" is a common query!

Strategies for Similarity Search



• Given a list of numbers

- Given a list of numbers
- "Similarity" is the difference between them

- Given a list of numbers
- "Similarity" is the difference between them
- How can we find the closest numbers (i.e. ones with smallest difference)?

• How efficiently can we do this?

7
23
44
60
65
67
80
92

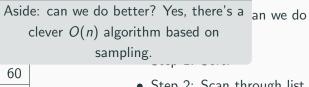
- How efficiently can we do this?
- Step 1: Sort!

7	
23	
44	
60	
65	
67	
80	
92	

- How efficiently can we do this?
- Step 1: Sort!
- Step 2: Scan through list, find most similar adjacent elements.

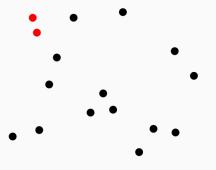
7	
23	
44	
60	
65	
67	
80	
92	

- How efficiently can we do this?
- Step 1: Sort!
- Step 2: Scan through list, find most similar adjacent elements.
- $O(n \log n)$ time



• Step 2: Scan through list,	
find most similar adjacent	
elements.	
• $O(n \log n)$ time	

Two-dimensional Data?



• You likely saw this in CS 256.

Two-dimensional Data?

- You likely saw this in CS 256.
- Divide and conquer,
 O(n log n) time.

Two-dimensional Data?

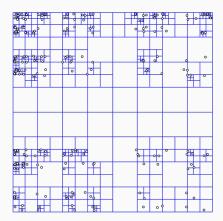
- You likely saw this in CS 256.
- Divide and conquer,
 O(n log n) time.
- (Again, possible in O(n))

• We want VERY high dimensions (millions)

- We want VERY high dimensions (millions)
- Songs listened to, movies watched, image tags, etc.

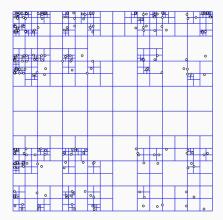
- We want VERY high dimensions (millions)
- Songs listened to, movies watched, image tags, etc.
- Words that appear in a book, k-grams that appear in a DNA sequence

- We want VERY high dimensions (millions)
- Songs listened to, movies watched, image tags, etc.
- Words that appear in a book, k-grams that appear in a DNA sequence
- Classic options: quad trees, kd trees

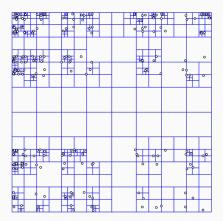


• $O(n \log n)$ for constant dimensions

How Efficient are High-dimensional Algorithms?



- $O(n \log n)$ for constant dimensions
- But: exponential in dimension!



- $O(n \log n)$ for constant dimensions
- But: exponential in dimension!
- Worse than trying all pairs if > log *n* dimensions

• Many problems have running time exponential in the dimension of the objects.

• Many problems have running time exponential in the dimension of the objects.

• Well-known phenomenon

• Many problems have running time exponential in the dimension of the objects.

• Well-known phenomenon

• Applies to similarity search, machine learning, combinatorics

• Today we're talking about how to get efficient algorithms for *arbitrarily* large dimensions.

- Today we're talking about how to get efficient algorithms for *arbitrarily* large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).

- Today we're talking about how to get efficient algorithms for *arbitrarily* large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:

- Today we're talking about how to get efficient algorithms for *arbitrarily* large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:
 - Assume that the close pair is much closer than any other (*approximate* closest pair)

- Today we're talking about how to get efficient algorithms for *arbitrarily* large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:

We'll come back to this later

• Assume that the close pair is much closer than any other (*approximate* closest pair)

- Today we're talking about how to get efficient algorithms for *arbitrarily* large dimensions.
- Linear cost in terms of dimension (but expensive in terms of the problem size).
- Two tools to get us there:

We'll come back to this later

- Assume that the close pair is much closer than any other (*approximate* closest pair)
- Use hashing! ... A special kind of hashing

Locality-Sensitive Hashing

• Normally, hashing *spreads out* elements.

• Normally, hashing *spreads out* elements.

• This is key to hashing: no matter how clustered my data begins, I wind up with a nicely-distributed hash table

• Normally, hashing *spreads out* elements.

• This is key to hashing: no matter how clustered my data begins, I wind up with a nicely-distributed hash table

• Locality-sensitive hashing tries to hash similar items together

• Needs a similarity threshold r, an approximation factor c < 1

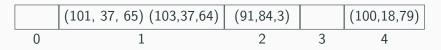
- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p₁.

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p₁.
 - If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p₂.

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p₁.
 - If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p₂.
- High level: close items are likely to collide. Far items are unlikely to collide.

- Needs a similarity threshold r, an approximation factor c < 1
- Two guarantees:
 - If two items x and y have similarity ≥ r, h(x) = h(y) with probability at least p₁.
 - If two items x and y have similarity ≤ cr, h(x) = h(y) with probability at most p₂.
- High level: close items are likely to collide. Far items are unlikely to collide.
- Generally want p₂ to be about 1/n; then we get a normal hash table for far (i.e. distance ≥ cr) elements.



Ideally, close items hash to the same bucket.

• If we have $p_2 = 1/n$, then p_1 is usually very small.

Issue: Low probability of success!

We'll put numbers on this later

• If we have $p_2 = 1/n$, then p_1 is usually very small.

• How can we increase this probability?

• If we have $p_2 = 1/n$, then p_1 is usually very small.

• How can we increase this probability?

• Repetitions! Maintain many hash tables, each with a different locality-sensitive hash function, and try all of them.

(101, 37, 65)	(103,37,64)	(91,84,3)	(100,18,79)	
0	1	2	3	4
	(101,37,65) (103,37,64)	(91,84,3)		(100,18,79)
0	1	2	3	4
(101, 37, 65)		(103,37,64)		(91,84,3) (100,18,79)
0	1	2	3	4

Similarity

• How can we measure the similarity of objects?

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user
 - Human-generated tags given to an image

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user
 - Human-generated tags given to an image
 - Words that appear in a document

- How can we measure the similarity of objects?
- Images in machine learning: often Euclidean distance (the distance we're familiar with on a day-to-day basis)
- What about sets?
 - Songs listened to by a user
 - Movies watched by a user
 - Human-generated tags given to an image
 - Words that appear in a document
- Need a way to measure set similarity

User 1	User 2	
Post Malone	Ariana Grande	
Ariana Grande	Khalid	
Khalid	Drake	
Drake	Travis Scott	
Travis Scott		

• When are two sets similar?

User 1	User 2	
Post Malone	Ariana Grande	
Ariana Grande	Khalid	
Khalid	Drake	
Drake	Travis Scott	
Travis Scott		

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of *overlap*

	Ver
User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

• When are two sets similar?

similar!

- Let's look at our two sets.
 Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

User 1	User 2	
Post Malone	Ariana Grande	
Ariana Grande		
Khalid		
Drake		
Travis Scott		

- When are two sets similar?
- Let's look at our two sets. Similar if they have a lot of *overlap*
- I.e. : lots of artists in common, compared to total artists in either list

	Not v	ery similar!
User 1	User 2	• When a
Post Malone	Ariana Grande	• Let's lo
Ariana Grande		Similar overlap
Khalid		,
Drake		• I.e. : Ic
Travis Scott		commo

- When are two sets similar?
- Let's look at our two sets.
 Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- When are two sets similar?
- Let's look at our two sets.
 Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

Moderately similar

- When are two sets similar?
- Let's look at our two sets.
 Similar if they have a lot of overlap
- I.e. : lots of artists in common, compared to total artists in either list

Jaccard Similarity

• Similarity measure for sets A and B

- Similarity measure for sets A and B
- Defined as:

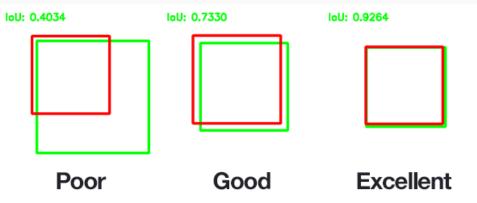
$$\frac{|A \cap B|}{|A \cup B|}$$

- Similarity measure for sets A and B
- Defined as:

$$\frac{|A \cap B|}{|A \cup B|}$$

• Intuitively: what fraction of these sets overlaps?

Jaccard Similarity Intuition 1



Jaccard Similarity Intuition 2

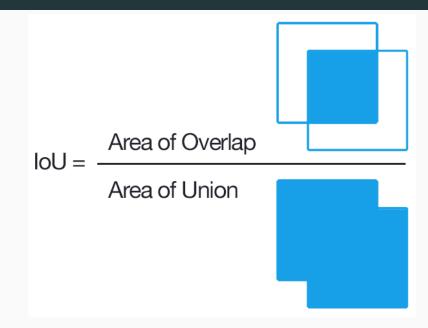
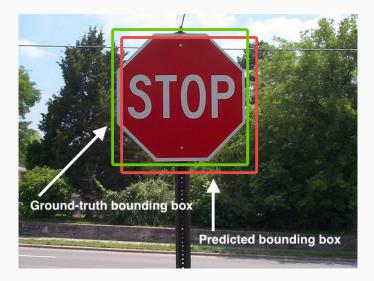


Image Search Example



User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

•
$$|A \cap B| = 4$$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

•
$$|A \cap B| = 4$$

•
$$|A \cup B| = 5$$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Khalid
Khalid	Drake
Drake	Travis Scott
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 4$
- $|A \cup B| = 5$
- Jaccard Similarity: 4/5 = .8

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

•
$$|A \cap B| = 1$$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 1$

•
$$|A \cup B| = 5$$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	
Khalid	
Drake	
Travis Scott	

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 1$
- $|A \cup B| = 5$
- Jaccard Similarity: 1/5 = .2

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

• $|A \cap B| = 3$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 3$

•
$$|A \cup B| = 7$$

User 1	User 2
Post Malone	Ariana Grande
Ariana Grande	Ed Sheerhan
Khalid	Drake
Drake	Travis Scott
Travis Scott	Taylor Swift

- Similarity: $|A \cap B|/|A \cup B|$.
- $|A \cap B| = 3$
- $|A \cup B| = 7$
- Jaccard Similarity: 3/7 = 0.428

• Works on sets (each dimension is *binary*—an item is in the set, or not in the set)

- Works on sets (each dimension is *binary*—an item is in the set, or not in the set)
- Always gives a number between 0 and 1

- Works on sets (each dimension is *binary*—an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common

- Works on sets (each dimension is *binary*—an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common
- Jaccard similarity ignores items not in either set. So we learn nothing if neither of us like an artist. (Is this good?)

- Works on sets (each dimension is *binary*—an item is in the set, or not in the set)
- Always gives a number between 0 and 1
- 1 means identical, 0 means no items in common
- Jaccard similarity ignores items not in either set. So we learn nothing if neither of us like an artist. (Is this good?)
- Still works if one list is much longer than the other. Generally, they'll have small overlap

Locality-Sensitive Hash for Jaccard Similarity

• Want: items with high Jaccard Similarity are likely to hash together

Locality-Sensitive Hash for Jaccard Similarity

- Want: items with high Jaccard Similarity are likely to hash together
- Items with low Jaccard Similarity are UNlikely to hash together

Locality-Sensitive Hash for Jaccard Similarity

- Want: items with high Jaccard Similarity are likely to hash together
- Items with low Jaccard Similarity are UNlikely to hash together
- Classic method: MinHash

MinHash

• Developed by Andrei Broder in 1997 while working at AltaVista

- Developed by Andrei Broder in 1997 while working at AltaVista
- (AltaVista was probably the most popular search engine before Google, they wanted to detect similar web pages to eliminate them from search results)

- Developed by Andrei Broder in 1997 while working at AltaVista
- (AltaVista was probably the most popular search engine before Google, they wanted to detect similar web pages to eliminate them from search results)
- Now used for similarity search, database joins, clustering—LOTS of things.

• Can represent any set as a vector of bits

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be {red, yellow, blue, green, purple, orange}

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be {red, yellow, blue, green, purple, orange}
- If someone likes red and blue, we can store that information as 101000.

- Can represent any set as a vector of bits
- Each bit is an item. "1" means that that item is in the set, "0" means it's not
- So if I'm keeping track of different people's favorite colors, my universe may be {red, yellow, blue, green, purple, orange}
- If someone likes red and blue, we can store that information as 101000.
- Effective if universe is smallish; use a list for larger universe

• How can we determine $A \cap B$?

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation
- What about $A \cup B$?

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation
- What about $A \cup B$?
 - This is exactly A \mid B in C-style notation

- How can we determine $A \cap B$?
 - This is exactly A & B in C-style notation
- What about $A \cup B$?
 - This is exactly A | B in C-style notation
- We want the size of these sets—need to count the number of 1s in A & B, or A | B.

• The hash consists of an *permutation* of all possible items in the universe

128 in the assignment

• The hash consists of an *permutation* of all possible items in the universe

• To hash a set A: find the first item of A in the order given by the permutation. That item is the hash value!

• Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow)

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow)
- First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is blue.

- Let's stick with favorite colors, out of {red, yellow, blue, green, purple, orange}
- To hash, we randomly permute them. Let's say our current hash is given by the permutation (blue, orange, green, purple, red, yellow)
- First set is 101000 (same as {red, blue}). blue is in the set, so the hash value is blue.
- Second set is 110010 (we could also write {red, yellow, purple}). blue is not in the set; nor is orange; nor is green. purple is, so purple is the hash value

• On the assignment, have bit vectors of length 128

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0, 1, 2, ..., 127}

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0,1,2,...,127}
- To hash an item x, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of x is 1.

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0,1,2,...,127}
- To hash an item x, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of x is 1.
- Let's say x = 10011001, and the permutation is (1,5,2,0,7,6,4,3).

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0,1,2,...,127}
- To hash an item x, go through the ran For the sake tion. Find the first index *i* in the list such that the fispace let's is 1.
- Let's say x = 10011001, and the permutation is (1, 5, 2, 0, 7, 6, 4, 3).

- On the assignment, have bit vectors of length 128
- To get a hash function, we need a random permutation of the indices of these bits. That is to say, a random permutation of {0,1,2,...,127}
- To hash an item x, go through the random permutation. Find the first index *i* in the list such that the *i*th bit of x is 1.
- Let's say x = 10011001, and the permutation is (1,5,2,0,7,6,4,3).
- Then the hash of x is 5.

Analysis of Basic MinHash

• What is the probability that h(A) = h(B)?

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any item that is not in *A* or *B*.

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any item that is not in *A* or *B*.
- Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any item that is not in *A* or *B*.
- Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)
 - If this index is in both A and B, then h(A) = h(B)

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any item that is not in *A* or *B*.
- Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)
 - If this index is in both A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any item that is not in *A* or *B*.
- Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)
 - If this index is in both A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash together; otherwise they do not

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any item that is not in *A* or *B*.
- Look at the first index in the permutation that is in A or B (i.e. it is in A ∪ B)
 - If this index is in both A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index in A ∪ B is equally likely to be first. If the index is in A ∩ B, they hash together; otherwise they do not
- Therefore: probability of hashing together is $|A \cap B|/|A \cup B|$.

• This means MinHash is an LSH!

- This means MinHash is an LSH!
- If two items have similarity at least *r*, they collide with probability at least *r*

- This means MinHash is an LSH!
- If two items have similarity at least *r*, they collide with probability at least *r*
- If two items have similarity at most *cr*, they collide with probability at most *cr*

Analysis: Phrased as bit vectors

- What is the probability that h(A) = h(B)?
- Let's look at the permutation that defines *h*. We can ignore any index that is 0 in both *A* and *B*.
- Look at the first index in the permutation that is 1 in A or B
 - If this index is in both A and B, then h(A) = h(B)
 - If this index is in only one of A or B, then $h(A) \neq h(B)$
- Any index that is 1 in A|B is equally likely to be first. If the index is in A&B, they hash together; otherwise they do not
- Therefore: probability of hashing together is (number of 1s in A&B)/(number of 1s in A|B).

• Let's say we have $A = \{$ red, blue, green $\}$ and $B = \{$ red, orange, purple, green $\}$.

- Let's say we have $A = \{$ red, blue, green $\}$ and $B = \{$ red, orange, purple, green $\}$.
- When do A and B hash together?

- Let's say we have $A = \{$ red, blue, green $\}$ and $B = \{$ red, orange, purple, green $\}$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together

- Let's say we have $A = \{$ red, blue, green $\}$ and $B = \{$ red, orange, purple, green $\}$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they hash together

- Let's say we have $A = \{$ red, blue, green $\}$ and $B = \{$ red, orange, purple, green $\}$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they hash together
- Probability that red or green is first out of {red, blue, green, orange, purple} is 2/5.

Analysis Example

- Let's say we have $A = \{$ red, blue, green $\}$ and $B = \{$ red, orange, purple, green $\}$.
- When do A and B hash together?
- If red or green appears before blue, orange, and purple then they hash together
- If blue or orange or purple appear before red and green, then they hash together
- Probability that red or green is first out of {red, blue, green, orange, purple} is 2/5.
- Therefore, A and B hash together with probability 2/5.

• To find the close pair, compare all pairs of items that hash to the same value

- To find the close pair, compare all pairs of items that hash to the same value
 - (We'll talk about how to do this later—it's similar to MiniMidterm 1)

- To find the close pair, compare all pairs of items that hash to the same value
 - (We'll talk about how to do this later—it's similar to MiniMidterm 1)
- Let's say our close pair has similarity .5. How many times do we need to repeat?

- To find the close pair, compare all pairs of items that hash to the same value
 - (We'll talk about how to do this later—it's similar to MiniMidterm 1)
- Let's say our close pair has similarity .5. How many times do we need to repeat?
- Each repetition has the close pair in the same bucket with probability .5. So need 2 repetitions in expectation.

Lemma 1

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

Lemma 1

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

• It takes two coin flips in expectation before we see a heads

Lemma 1

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

- It takes two coin flips in expectation before we see a heads
- We need to roll a 6-sided die 6 times before we see (say) a three.

Lemma 1

If a random process succeeds with probability p, then in expectation it takes 1/p iterations of the process before success.

Examples:

- It takes two coin flips in expectation before we see a heads
- We need to roll a 6-sided die 6 times before we see (say) a three.

Proof:

$$\sum_{i=1}^{\infty} ip(1-p)^{i-1} = \frac{p}{(1-(1-p))^2} = \frac{1}{p}$$

Concatenations and Repetitions

• Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)

- Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)
- How can we decrease the probability that items hash together?

- Buckets are really big!! (After all, lots of items are pretty likely to have a given bit set.)
- How can we decrease the probability that items hash together?
- Answer: concatenate multiple hashes together.

• Rather than one hash h, concatenate k independent hashes h_1, h_2, \ldots, h_k , each with its own permutation P_1, P_2, \ldots, P_k .

- Rather than one hash h, concatenate k independent hashes h_1, h_2, \ldots, h_k , each with its own permutation P_1, P_2, \ldots, P_k .
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)

- Rather than one hash h, concatenate k independent hashes h_1, h_2, \ldots, h_k , each with its own permutation P_1, P_2, \ldots, P_k .
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?

- Rather than one hash h, concatenate k independent hashes h_1, h_2, \ldots, h_k , each with its own permutation P_1, P_2, \ldots, P_k .
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?
 - For each of the k independent hashes, A and B collide with probability $|A \cap B|/|A \cup B|$.

- Rather than one hash h, concatenate k independent hashes h_1, h_2, \ldots, h_k , each with its own permutation P_1, P_2, \ldots, P_k .
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?
 - For each of the k independent hashes, A and B collide with probability $|A \cap B|/|A \cup B|$.
 - We only obtain the same concatenated hashes if *all* of the hashes are the same.

- Rather than one hash h, concatenate k independent hashes h_1, h_2, \ldots, h_k , each with its own permutation P_1, P_2, \ldots, P_k .
- To hash an item: repeat the process of searching through the permutation for each hash. Then concatenate the results together (can just use string concatenation)
- How does this affect the probability for sets A and B?
 - For each of the k independent hashes, A and B collide with probability $|A \cap B|/|A \cup B|$.
 - We only obtain the same concatenated hashes if *all* of the hashes are the same.
 - They are independent, so we can multiply to obtain probability $(|A \cap B|/|A \cup B|)^k$ of A and B colliding.

• Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.

- Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$

- Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.

- Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.

- Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.
 - Second hash: orange not in A, nor is green. Blue is in A.

- Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.
 - Second hash: orange not in A, nor is green. Blue is in A.
 - Third hash: red is in A.

- Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash A.
 - First hash: red is in A.
 - Second hash: orange not in A, nor is green. Blue is in A.
 - Third hash: red is in A.
- Concatenating, we have h(A) = redbluered

• Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.

- Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.

- Let's say we have $A = \{ red, blue \}$ and $B = \{ red, orange \}$, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in *B*.

- Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.
 - Second hash: orange is in B.

- Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.
 - Second hash: orange is in B.
 - Third hash: red is in B.

- Let's say we have A = {red, blue} and B = {red, orange}, and k = 3.
- $P_1 = \{\text{red, green, blue, orange}\}, P_2 = \{\text{orange, green, blue, red}\}, P_3 = \{\text{red, green, blue, orange}\}$
- Let's hash B.
 - First hash: red is in B.
 - Second hash: orange is in B.
 - Third hash: red is in B.
- Concatenating, we have h(B) = redorangered

• For each hash table, we concatenate k hashes.

- For each hash table, we concatenate k hashes.
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat *R* times)

- For each hash table, we concatenate k hashes.
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat *R* times)
- So: overall need kR permutations

- For each hash table, we concatenate k hashes.
- Need to repeat all of that multiple times until we find the close pair (let's say we repeat *R* times)
- So: overall need kR permutations
- What kind of values work for k and R?

• Let's say we have a set of n items x_1, \ldots, x_n

- Let's say we have a set of n items x_1, \ldots, x_n
- The close pair of items has Jaccard similarity 3/4

- Let's say we have a set of n items x_1, \ldots, x_n
- The close pair of items has Jaccard similarity 3/4
- Every other pair of items has similarity $1/3\,$

- Let's say we have a set of *n* items x_1, \ldots, x_n
- The close pair of items has Jaccard similarity 3/4
- Every other pair of items has similarity 1/3
- How should we set k? How many repetitions R is it likely to take?

• Non-similar pairs have similarity 1/3

Putting it Together: Analysis (Finding *k*)

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)

Putting it Together: Analysis (Finding k)

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)
- Look at an element x_i . The expected size of the bucket of x_i is $\sum_{j \neq i} (1/3)^k$ (since x_i and any x_j with $j \neq i$ share a hash value with probability $1/3^k$)

Putting it Together: Analysis (Finding k)

- Non-similar pairs have similarity 1/3
- We want buckets to be small (have O(1) size)
- Look at an element x_i . The expected size of the bucket of x_i is $\sum_{j \neq i} (1/3)^k$ (since x_i and any x_j with $j \neq i$ share a hash value with probability $1/3^k$)
- We can then solve $(n-1)(1/3)^k = 1$ to get $k = \log_3 n 1$.

• The similar pair has Jaccard similarity .75

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = \log_3 n 1$. So....we need to do some algebra

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = \log_3 n 1$. So....we need to do some algebra
- $(.75)^{\log_3 n-1} = 2^{\log(n-1)\log(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = \log_3 n 1$. So....we need to do some algebra

•
$$(.75)^{\log_3 n-1} = 2^{\log(n-1)\log(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$$

• So we expect about $R = n^{26}$ repetitions. That's a lot!

- The similar pair has Jaccard similarity .75
- So they are in the same bucket with probability $(.75)^k$
- We have $k = \log_3 n 1$. So....we need to do some algebra

•
$$(.75)^{\log_3 n-1} = 2^{\log(n-1)\log(3/4)/\log(3)} = (n-1)^{\log(3/4)/\log(3)} \approx 1/n^{.26}$$

- So we expect about $R = n^{26}$ repetitions. That's a lot!
- But it's essentially the best we know how to do.

Practical MinHash Considerations

• OK, so *kR* repetitions is a LOT of preprocessing, and a lot of random number generation

- OK, so *kR* repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't make it more than a few indices into the permutation.

- OK, so *kR* repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need k/3 permutations per hash table to get similar bounds.

- OK, so *kR* repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need k/3 permutations per hash table to get similar bounds.
- So let's say we have A = {black, red, green, blue, orange}, and we're looking at a permutation P = {purple, red, white, orange, yellow, blue, green, black}.

- OK, so *kR* repetitions is a LOT of preprocessing, and a lot of random number generation
- And most of this won't ever be used! Most of the time, when we hash, we don't make it more than a few indices into the permutation.
- Idea: Instead of taking just the first hash item that appears in the permutation, take the first (say) 3. Concatenate them together. Then we just need k/3 permutations per hash table to get similar bounds.
- So let's say we have A = {black, red, green, blue, orange}, and we're looking at a permutation P = {purple, red, white, orange, yellow, blue, green, black}.
- Then A hashes to redorangeblue

• If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.

• If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.

• Does this affect the analysis?

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?
 - Yes; the *k* we're concatenating for each hash table are no longer independent!

- If you take the \hat{k} first items when hashing, rather than just taking the first one, we only need kR/\hat{k} total permutations.
- Does this affect the analysis?
 - Yes; the *k* we're concatenating for each hash table are no longer independent!
 - But this works fine in practice (and is used all the time)

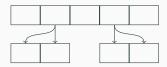
• We chose parameters so that buckets are small in expectation (i.e. on average)

- We chose parameters so that buckets are small in expectation (i.e. on average)
- But: time to process a bucket is quadratic.

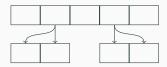
- We chose parameters so that buckets are small in expectation (i.e. on average)
- But: time to process a bucket is quadratic.
- So getting unlucky is super costly!

- We chose parameters so that buckets are small in expectation (i.e. on average)
- But: time to process a bucket is quadratic.
- So getting unlucky is super costly!
- What can we do if we happen to get a big bucket?

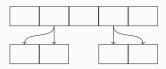
• Recurse!



- Recurse!
- Take all items in any really large bucket, rehash them into subbuckets



- Recurse!
- Take all items in any really large bucket, rehash them into subbuckets
- Might need to repeat



- Recurse!
- Take all items in any really large bucket, rehash them into subbuckets
- Might need to repeat
- This option can shave off small but significant running time

• Practical datasets have some nice structure

- Practical datasets have some nice structure
 - Similar items tend to be really similar

- Practical datasets have some nice structure
 - Similar items tend to be really similar
 - Tend to appear in clusters

- Practical datasets have some nice structure
 - Similar items tend to be really similar
 - Tend to appear in clusters
- In practice, can use some simple heuristics in conjunction with MinHash to perform better

- Practical datasets have some nice structure
 - Similar items tend to be really similar
 - Tend to appear in clusters
- In practice, can use some simple heuristics in conjunction with MinHash to perform better
- If there's enough structure, can use entirely different methods

• Second video on some ideas for implementing MinHash

• Second video on some ideas for implementing MinHash

• You should watch!