Lecture 12: Implementing MinHash

Sam McCauley
April 27, 2020

Williams College

Where Are We Now?

MinHash:

e Hash all items using k concatenated indices

Where Are We Now?

MinHash:

e Hash all items using k concatenated indices

e For any two items with the same hash value, calculate their
similarity

Where Are We Now?

MinHash:

e Hash all items using k concatenated indices

e For any two items with the same hash value, calculate their
similarity

e If two items have similarity over threshold, return those items.

Where Are We Now?

MinHash:

Hash all items using k concatenated indices

For any two items with the same hash value, calculate their
similarity

If two items have similarity over threshold, return those items.

If two such items never found, repeat with new permutations

Where Are We Now?

MinHash:

Hash all items using k concatenated indices

For any two items with the same hash value, calculate their
similarity

If two items have similarity over threshold, return those items.

If two such items never found, repeat with new permutations

How can we do this?

Assignment Parameters

e 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

Assignment Parameters

e 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

e Universe: {0,...,127}. (You can pretend that these are
images, each of which is labelled with a subset of 128 possible

tags.)

Assignment Parameters

e 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

e Universe: {0,...,127}. (You can pretend that these are
images, each of which is labelled with a subset of 128 possible

tags.)

e Each bitis a 0 or 1 at random

Assignment Parameters

128 bit integers (stored as two unsigned 64 bit ints “Pair”)

Universe: {0,...,127}. (You can pretend that these are
images, each of which is labelled with a subset of 128 possible

tags.)

Each bit is a 0 or 1 at random

(Not realistic case, but hard case!)

What About Hashing?

e MinHash: go through each index in the permutation

What About Hashing?

e MinHash: go through each index in the permutation

e See if the corresponding bit is a 1 in the element we're
hashing.

What About Hashing?

e MinHash: go through each index in the permutation

e See if the corresponding bit is a 1 in the element we're

hashing.

e How can we do this?

What About Hashing?

MinHash: go through each index in the permutation

See if the corresponding bit is a 1 in the element we're

hashing.
e How can we do this?

Most efficient way | know is not clever. Just go through each
index, and check to see if that bit is set (say by calculating x
& (1 << index) —but remember that these are 128 bits)

Concatenating Indices

e Each time you hash you'll get k indices

Concatenating Indices

e Each time you hash you'll get k indices

e Each is a number from 0 to 127

Concatenating Indices

e Each time you hash you'll get k indices
e Each is a number from 0 to 127

e How can these get concatenated together?

Concatenating Indices

e Each time you hash you'll get k indices

Each is a number from 0 to 127

How can these get concatenated together?

Option 1: convert to strings, call strcat

Concatenating Indices

e Each time you hash you'll get k indices

e Each is a number from 0 to 127

e How can these get concatenated together?
e Option 1: convert to strings, call strcat

e Note: need to make sure to convert to three-digit strings!
Otherwise hashing to 12 and then 1 will look the same as
hashing to 1 and then 21. (012 and 001 instead)

Concatenating Indices

e Each time you hash you'll get k indices

e Each is a number from 0 to 127

e How can these get concatenated together?
e Option 1: convert to strings, call strcat

e Note: need to make sure to convert to three-digit strings!
Otherwise hashing to 12 and then 1 will look the same as
hashing to 1 and then 21. (012 and 001 instead)

e Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

Getting a Good k

e In theory we want buckets of size 1.

Getting a Good k

e In theory we want buckets of size 1.

e In practice, we want slightly bigger.

Getting a Good k

e In theory we want buckets of size 1.
e In practice, we want slightly bigger.

e Why? Lots of buckets and lots of repetitions have bad
constants.

Getting a Good k

In theory we want buckets of size 1.

In practice, we want slightly bigger.

Why? Lots of buckets and lots of repetitions have bad

constants.

Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

Getting a Good k

In theory we want buckets of size 1.

e In practice, we want slightly bigger.

e Why? Lots of buckets and lots of repetitions have bad
constants.

e Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

e Start with k ~ logz n, but experiment with slightly smaller

values.

Repetitions?

e You're guaranteed that there exists a close pair in the dataset

Repetitions?

e You're guaranteed that there exists a close pair in the dataset

e My implementation just keeps repeating until the pair is found
(no maximum number of repetitions)

Repetitions?

e You're guaranteed that there exists a close pair in the dataset

e My implementation just keeps repeating until the pair is found
(no maximum number of repetitions)

e The discussion of repetitions in the lecture is for two reasons:
1. analysis, 2. give intuition for the tradeoff by varying k

How to Deal with Buckets?

e Each time we hash, (i.e. build a new "hash table”) need to
figure out what hashes where so that we can compare
elements with the same hash

How to Deal with Buckets?

e Each time we hash, (i.e. build a new "hash table”) need to
figure out what hashes where so that we can compare
elements with the same hash

e Unfortunately, we're not hashing to a number from (say) 0 to
n — 1. We're instead concatenating indices

How to Deal with Buckets?

e Each time we hash, (i.e. build a new "hash table”) need to
figure out what hashes where so that we can compare
elements with the same hash

e Unfortunately, we're not hashing to a number from (say) 0 to
n — 1. We're instead concatenating indices

e How to keep track of buckets?

How to Deal with Buckets?

e Each time we hash, (i.e. build a new "hash table”) need to
figure out what hashes where so that we can compare
elements with the same hash

e Unfortunately, we're not hashing to a number from (say) 0 to
n — 1. We're instead concatenating indices

e How to keep track of buckets?

e |'ll give three options. | believe one is likely best but I'm not
sure.

Option 1: Sorting

e This | got from a student’s midterm solution (thanks if it was
you!)

Option 1: Sorting

e This | got from a student’s midterm solution (thanks if it was

you!)

e For each item, store a struct with both the item and its hash

value. Store these structs all in an array

Option 1: Sorting

e This | got from a student’s midterm solution (thanks if it was
you!)

e For each item, store a struct with both the item and its hash

value. Store these structs all in an array

e Sort the array by hash value. Then all items with the same
hash value will be adjacent!

Option 1: Sorting

e This | got from a student’s midterm solution (thanks if it was
you!)

e For each item, store a struct with both the item and its hash
value. Store these structs all in an array

e Sort the array by hash value. Then all items with the same
hash value will be adjacent!

e Then: scan array left to right. Call an all-compare-all function
on each sequence of array indices that have the same hash

value.

Option 1: Sorting

Pros of this method?

e Easy to implement; just need an array and a sort function

Option 1: Sorting

Pros of this method?

e Easy to implement; just need an array and a sort function

e Cache-efficient

Option 1: Sorting

Pros of this method?

e Easy to implement; just need an array and a sort function
e Cache-efficient

e Space-efficient

Cons?

Option 1: Sorting

Pros of this method?

e Easy to implement; just need an array and a sort function
e Cache-efficient

e Space-efficient
Cons?

e O(nlogn) time, where only O(n) time is required

Option 1: Sorting

Pros of this method?

e Easy to implement; just need an array and a sort function
e Cache-efficient

e Space-efficient
Cons?

e O(nlogn) time, where only O(n) time is required

e Need to make the structs and copy over the data

Option 2: Hash table

e Create a hash table of size N = O(n)

10

Option 2: Hash table

e Create a hash table of size N = O(n)

e Once you get the hash value, use murmurhash to get a

random 32-bit number. Mod that to get a number from 0 to
N—1

10

Option 2: Hash table

e Create a hash table of size N = O(n)
e Once you get the hash value, use murmurhash to get a
random 32-bit number. Mod that to get a number from 0 to

N—-1

e Use chaining to resolve collisions

10

Option 2: Hash table

Create a hash table of size N = O(n)

e Once you get the hash value, use murmurhash to get a
random 32-bit number. Mod that to get a number from 0 to
N—1

Use chaining to resolve collisions

This does increase bucket size (as multiple buckets may wind
up in the same place in the table)

10

Option 2: Hash table

Pros?
e O(n), easy to pass buckets
Cons?

e Need to make a whole hash table

11

Option 2: Hash table

Pros?
e O(n), easy to pass buckets
Cons?

e Need to make a whole hash table

e (very) cache-inefficient

11

Option 3: Array for Each Bucket

e Scan items to get the size of each bucket

12

Option 3: Array for Each Bucket

e Scan items to get the size of each bucket

e Then, make an array for each bucket

12

Option 3: Array for Each Bucket

e Scan items to get the size of each bucket
e Then, make an array for each bucket

e Pros: O(n) time, optimal space, easy to pass around

12

Option 3: Array for Each Bucket

Scan items to get the size of each bucket

Then, make an array for each bucket

Pros: O(n) time, optimal space, easy to pass around

Cons: Seems difficult, and perhaps bad constants

12

Storing a Hash

e Just need a permutation on {0,..., 127}

13

Storing a Hash

e Just need a permutation on {0,..., 127}

e How can we store that?

13

Storing a Hash

e Just need a permutation on {0,..., 127}
e How can we store that?

e First key observation: we (basically) never make it through
the whole permutation (we'll always see at least one 1 first)

13

Storing a Hash

e Just need a permutation on {0,..., 127}
e How can we store that?

e First key observation: we (basically) never make it through
the whole permutation (we'll always see at least one 1 first)

e Taking that a bit further: we only really need the first few
indices. If we're using k indices from one ordering, something
like 4k or 8k will almost certainly suffice.

13

Storing a Hash

e Just need a permutation on {0,..., 127}
e How can we store that?

e First key observation: we (basically) never make it through
the whole permutation (we'll always see at least one 1 first)

e Taking that a bit further: we only really need the first few
indices. If we're using k indices from one ordering, something
like 4k or 8k will almost certainly suffice.

e What about elements that hash further? Answer: just give
them the value of the last index in the ordering.

13

Truncating Hash Example

e Let's say our permutation is
{47,11,85,64,13,74,70,107,112,103,7,95,3, ...} and
k=2

14

Truncating Hash Example

e Let's say our permutation is
{47,11,85,64,13,74,70,107,112,103,7,95,3, ...} and
k=2

e | only store {47,11,85,64,13,74,107,112}. If we go past 112
for some x, and we have not seen k indices that are a 1 in x, |
just write 112 until | get k numbers.

14

Takeaway from Truncating Hashes

e This means we can store fewer bits, fewer random numbers

ii5)

Takeaway from Truncating Hashes

e This means we can store fewer bits, fewer random numbers

e Might be easier to handle. (Arrays of size 16-20 are nicer than
arrays of size 128.)

ii5)

