
Lecture 12: Implementing MinHash

Sam McCauley

April 27, 2020

Williams College



Where Are We Now?

MinHash:

• Hash all items using k concatenated indices

• For any two items with the same hash value, calculate their

similarity

• If two items have similarity over threshold, return those items.

• If two such items never found, repeat with new permutations

How can we do this?

1



Where Are We Now?

MinHash:

• Hash all items using k concatenated indices

• For any two items with the same hash value, calculate their

similarity

• If two items have similarity over threshold, return those items.

• If two such items never found, repeat with new permutations

How can we do this?

1



Where Are We Now?

MinHash:

• Hash all items using k concatenated indices

• For any two items with the same hash value, calculate their

similarity

• If two items have similarity over threshold, return those items.

• If two such items never found, repeat with new permutations

How can we do this?

1



Where Are We Now?

MinHash:

• Hash all items using k concatenated indices

• For any two items with the same hash value, calculate their

similarity

• If two items have similarity over threshold, return those items.

• If two such items never found, repeat with new permutations

How can we do this?

1



Where Are We Now?

MinHash:

• Hash all items using k concatenated indices

• For any two items with the same hash value, calculate their

similarity

• If two items have similarity over threshold, return those items.

• If two such items never found, repeat with new permutations

How can we do this?

1



Assignment Parameters

• 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

• Universe: {0, . . . , 127}. (You can pretend that these are

images, each of which is labelled with a subset of 128 possible

tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

2



Assignment Parameters

• 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

• Universe: {0, . . . , 127}. (You can pretend that these are

images, each of which is labelled with a subset of 128 possible

tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

2



Assignment Parameters

• 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

• Universe: {0, . . . , 127}. (You can pretend that these are

images, each of which is labelled with a subset of 128 possible

tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

2



Assignment Parameters

• 128 bit integers (stored as two unsigned 64 bit ints “Pair”)

• Universe: {0, . . . , 127}. (You can pretend that these are

images, each of which is labelled with a subset of 128 possible

tags.)

• Each bit is a 0 or 1 at random

• (Not realistic case, but hard case!)

2



What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the element we’re

hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each

index, and check to see if that bit is set (say by calculating x

& (1 << index) —but remember that these are 128 bits)

3



What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the element we’re

hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each

index, and check to see if that bit is set (say by calculating x

& (1 << index) —but remember that these are 128 bits)

3



What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the element we’re

hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each

index, and check to see if that bit is set (say by calculating x

& (1 << index) —but remember that these are 128 bits)

3



What About Hashing?

• MinHash: go through each index in the permutation

• See if the corresponding bit is a 1 in the element we’re

hashing.

• How can we do this?

• Most efficient way I know is not clever. Just go through each

index, and check to see if that bit is set (say by calculating x

& (1 << index) —but remember that these are 128 bits)

3



Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

4



Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

4



Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

4



Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

4



Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

4



Concatenating Indices

• Each time you hash you’ll get k indices

• Each is a number from 0 to 127

• How can these get concatenated together?

• Option 1: convert to strings, call strcat

• Note: need to make sure to convert to three-digit strings!

Otherwise hashing to 12 and then 1 will look the same as

hashing to 1 and then 21. (012 and 001 instead)

• Option 2: Treat as bits. 0 to 127 can be stored in 7 bits.

Store the hash as a sequence of k 8-bit chunks.

4



Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

5



Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

5



Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

5



Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

5



Getting a Good k

• In theory we want buckets of size 1.

• In practice, we want slightly bigger.

• Why? Lots of buckets and lots of repetitions have bad

constants.

• Smaller k means fewer buckets, fewer repetitions (but bigger

buckets and more comparisons)

• Start with k ≈ log3 n, but experiment with slightly smaller

values.

5



Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found

(no maximum number of repetitions)

• The discussion of repetitions in the lecture is for two reasons:

1. analysis, 2. give intuition for the tradeoff by varying k

6



Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found

(no maximum number of repetitions)

• The discussion of repetitions in the lecture is for two reasons:

1. analysis, 2. give intuition for the tradeoff by varying k

6



Repetitions?

• You’re guaranteed that there exists a close pair in the dataset

• My implementation just keeps repeating until the pair is found

(no maximum number of repetitions)

• The discussion of repetitions in the lecture is for two reasons:

1. analysis, 2. give intuition for the tradeoff by varying k

6



How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to

figure out what hashes where so that we can compare

elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to

n − 1. We’re instead concatenating indices

• How to keep track of buckets?

• I’ll give three options. I believe one is likely best but I’m not

sure.

7



How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to

figure out what hashes where so that we can compare

elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to

n − 1. We’re instead concatenating indices

• How to keep track of buckets?

• I’ll give three options. I believe one is likely best but I’m not

sure.

7



How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to

figure out what hashes where so that we can compare

elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to

n − 1. We’re instead concatenating indices

• How to keep track of buckets?

• I’ll give three options. I believe one is likely best but I’m not

sure.

7



How to Deal with Buckets?

• Each time we hash, (i.e. build a new “hash table”) need to

figure out what hashes where so that we can compare

elements with the same hash

• Unfortunately, we’re not hashing to a number from (say) 0 to

n − 1. We’re instead concatenating indices

• How to keep track of buckets?

• I’ll give three options. I believe one is likely best but I’m not

sure.

7



Option 1: Sorting

• This I got from a student’s midterm solution (thanks if it was

you!)

• For each item, store a struct with both the item and its hash

value. Store these structs all in an array

• Sort the array by hash value. Then all items with the same

hash value will be adjacent!

• Then: scan array left to right. Call an all-compare-all function

on each sequence of array indices that have the same hash

value.

8



Option 1: Sorting

• This I got from a student’s midterm solution (thanks if it was

you!)

• For each item, store a struct with both the item and its hash

value. Store these structs all in an array

• Sort the array by hash value. Then all items with the same

hash value will be adjacent!

• Then: scan array left to right. Call an all-compare-all function

on each sequence of array indices that have the same hash

value.

8



Option 1: Sorting

• This I got from a student’s midterm solution (thanks if it was

you!)

• For each item, store a struct with both the item and its hash

value. Store these structs all in an array

• Sort the array by hash value. Then all items with the same

hash value will be adjacent!

• Then: scan array left to right. Call an all-compare-all function

on each sequence of array indices that have the same hash

value.

8



Option 1: Sorting

• This I got from a student’s midterm solution (thanks if it was

you!)

• For each item, store a struct with both the item and its hash

value. Store these structs all in an array

• Sort the array by hash value. Then all items with the same

hash value will be adjacent!

• Then: scan array left to right. Call an all-compare-all function

on each sequence of array indices that have the same hash

value.

8



Option 1: Sorting

Pros of this method?

• Easy to implement; just need an array and a sort function

• Cache-efficient

• Space-efficient

Cons?

• O(n log n) time, where only O(n) time is required

• Need to make the structs and copy over the data

9



Option 1: Sorting

Pros of this method?

• Easy to implement; just need an array and a sort function

• Cache-efficient

• Space-efficient

Cons?

• O(n log n) time, where only O(n) time is required

• Need to make the structs and copy over the data

9



Option 1: Sorting

Pros of this method?

• Easy to implement; just need an array and a sort function

• Cache-efficient

• Space-efficient

Cons?

• O(n log n) time, where only O(n) time is required

• Need to make the structs and copy over the data

9



Option 1: Sorting

Pros of this method?

• Easy to implement; just need an array and a sort function

• Cache-efficient

• Space-efficient

Cons?

• O(n log n) time, where only O(n) time is required

• Need to make the structs and copy over the data

9



Option 1: Sorting

Pros of this method?

• Easy to implement; just need an array and a sort function

• Cache-efficient

• Space-efficient

Cons?

• O(n log n) time, where only O(n) time is required

• Need to make the structs and copy over the data

9



Option 2: Hash table

• Create a hash table of size N = O(n)

• Once you get the hash value, use murmurhash to get a

random 32-bit number. Mod that to get a number from 0 to

N − 1

• Use chaining to resolve collisions

• This does increase bucket size (as multiple buckets may wind

up in the same place in the table)

10



Option 2: Hash table

• Create a hash table of size N = O(n)

• Once you get the hash value, use murmurhash to get a

random 32-bit number. Mod that to get a number from 0 to

N − 1

• Use chaining to resolve collisions

• This does increase bucket size (as multiple buckets may wind

up in the same place in the table)

10



Option 2: Hash table

• Create a hash table of size N = O(n)

• Once you get the hash value, use murmurhash to get a

random 32-bit number. Mod that to get a number from 0 to

N − 1

• Use chaining to resolve collisions

• This does increase bucket size (as multiple buckets may wind

up in the same place in the table)

10



Option 2: Hash table

• Create a hash table of size N = O(n)

• Once you get the hash value, use murmurhash to get a

random 32-bit number. Mod that to get a number from 0 to

N − 1

• Use chaining to resolve collisions

• This does increase bucket size (as multiple buckets may wind

up in the same place in the table)

10



Option 2: Hash table

Pros?

• O(n), easy to pass buckets

Cons?

• Need to make a whole hash table

• (very) cache-inefficient

11



Option 2: Hash table

Pros?

• O(n), easy to pass buckets

Cons?

• Need to make a whole hash table

• (very) cache-inefficient

11



Option 3: Array for Each Bucket

• Scan items to get the size of each bucket

• Then, make an array for each bucket

• Pros: O(n) time, optimal space, easy to pass around

• Cons: Seems difficult, and perhaps bad constants

12



Option 3: Array for Each Bucket

• Scan items to get the size of each bucket

• Then, make an array for each bucket

• Pros: O(n) time, optimal space, easy to pass around

• Cons: Seems difficult, and perhaps bad constants

12



Option 3: Array for Each Bucket

• Scan items to get the size of each bucket

• Then, make an array for each bucket

• Pros: O(n) time, optimal space, easy to pass around

• Cons: Seems difficult, and perhaps bad constants

12



Option 3: Array for Each Bucket

• Scan items to get the size of each bucket

• Then, make an array for each bucket

• Pros: O(n) time, optimal space, easy to pass around

• Cons: Seems difficult, and perhaps bad constants

12



Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 4k̂ or 8k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

13



Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 4k̂ or 8k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

13



Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 4k̂ or 8k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

13



Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 4k̂ or 8k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

13



Storing a Hash

• Just need a permutation on {0,. . . , 127}

• How can we store that?

• First key observation: we (basically) never make it through

the whole permutation (we’ll always see at least one 1 first)

• Taking that a bit further: we only really need the first few

indices. If we’re using k̂ indices from one ordering, something

like 4k̂ or 8k̂ will almost certainly suffice.

• What about elements that hash further? Answer: just give

them the value of the last index in the ordering.

13



Truncating Hash Example

• Let’s say our permutation is

{47, 11, 85, 64, 13, 74, 70, 107, 112, 103, 7, 95, 3, . . .} and

k̂ = 2.

• I only store {47, 11, 85, 64, 13, 74, 107, 112}. If we go past 112

for some x , and we have not seen k̂ indices that are a 1 in x , I

just write 112 until I get k̂ numbers.

14



Truncating Hash Example

• Let’s say our permutation is

{47, 11, 85, 64, 13, 74, 70, 107, 112, 103, 7, 95, 3, . . .} and

k̂ = 2.

• I only store {47, 11, 85, 64, 13, 74, 107, 112}. If we go past 112

for some x , and we have not seen k̂ indices that are a 1 in x , I

just write 112 until I get k̂ numbers.

14



Takeaway from Truncating Hashes

• This means we can store fewer bits, fewer random numbers

• Might be easier to handle. (Arrays of size 16-20 are nicer than

arrays of size 128.)

15



Takeaway from Truncating Hashes

• This means we can store fewer bits, fewer random numbers

• Might be easier to handle. (Arrays of size 16-20 are nicer than

arrays of size 128.)

15


