
Lecture 11: Count-Min Sketch and HyperLogLog Counting

Sam McCauley

Written April 20, 2020; Last Edited April 20, 2020

1 Goal for Today

Computers are increasingly often tasked with dealing with extremely large amounts of data. This is par-
ticularly true on the internet: every user, every action, every message is a piece of data that needs to be
considered and processed very quickly.

In the last class, we learned about Bloom filters, which allow us to compress data. But you may have
noticed that there were serious limits to this compression: generally, each data item is compressed to the
size of a byte. At absolute minimum, a Bloom filter requires a bit or two of space for every stored item.
That isn’t going to work when the number of items we want to deal with number in the trillions or even
quadrillions.1

What we want is a much more aggressive form of compression. In fact, we want it to be so aggressive
that we can have a guaranteed size of our data structure that’s only logarithmic in the size of our data—or
even better than that.

How could such a thing be possible? And, if our data structure is that small, won’t we be losing almost
all of the information we’re looking for? Surprisingly, a simple and carefully built data structure can give us
extremely valuable information about the data, even under such draconian space requirements.

2 What is a Stream?

A stream is a very long sequence of data which is given to the data structure one item at a time. Once an
item is given to the data structure, the data structure updates its representation and the item is never seen
again. You can imagine this as sitting next to a large stream. You are trying to sample small bits of the
stream for analysis. But once something in the stream goes past you, that’s it—if you didn’t sample it, you
won’t see it again.

Formalism A stream is a list of items x1, . . . xN (a stream may contain duplicates, where xi = xj but
i 6= j). As in filters, we assume that items are of the same type for the sake of hashing: for some universe
U , xi ∈ U for all i, and all queries q must also satisfy q ∈ U . Each item in the stream is presented to the
data structure one at a time, in order. We will assume that an insert function is called on x1, then x2, and
so on until insert is called on xN .

The data structure is required to have small space, usually O(logN) or smaller (sometimes O(1)). Today
we will be looking at an example of each: the Count-Min Sketch requires O(logN) bits of space for constant
error, whereas the HyperLogLog data structure requires O(log logN) bits.

After all items have been inserted a single time into the data structure, we can make queries to learn
information about the stream. We will focus on two queries today:

• For a query q, how many times did q appear in the stream? In set notation, this asks us to determine
|{i ∈ {1, . . . , N} | xi = q}|.

1The Brazil Internet Exchange alone processes over 7 trillion bits, on average, every second.

1

• How many distinct items appeared in the stream overall? In set notation, this asks us to determine
|{xi | i ∈ {1, . . . , N}}|.

Discussion Streaming algorithms have been a major area of research throughout the 2000s and 2010s.
There exist entire courses on the topic.2 Streaming algorithms are are an excellent example of how random-
ized algorithms can make otherwise-impossible problems tractable.

Why are streaming algorithms so useful? One reason is that data streams are, in fact, fairly common
nowadays: packets being transmitted through a node in a network (say, a router on the internet) essentially
form a data stream. Any entity interested in monitoring that traffic needs to solve a problem on a large data
stream.

However, a further motivation comes (again!) from cache efficiency. As we discussed in class, the most
cache-efficient way to go through data is to scan it.3 So if you have a massive amount of data stored
somewhere that you want to analyze, the cheapest way to approach it is to scan through the data once,
keeping track of statistics in a small-space data structure as you go. This is, again, a problem on a large
data stream.4

3 Count Min Sketch

Our first data structure keeps an impressively accurate count of every item in a data stream while using
extremely small space.

The Count-Min Sketch is one of the best-known streaming data structures. It looks somewhat like a
Bloom filter, but with substantially different parameters. We will use two error terms ε and δ in describing
the Count Min Sketch, as well as the length of the stream N . We assume every hash hi outputs a number
in {0, . . . , de/εe − 1}.

Algorithm 1 Insert xi

for j = 0 to d1/δe − 1 do
T [j][hj(xi)] = T [j][hj(xi)] + 1

end for

Algorithm 2 Query q

min = 0
for j = 0 to d1/δe − 1 do

if min < T [j][hj(q)] then
min ← T [j][hj(q)]

end if
end for
return min

Structure The Count Min Sketch (CMS) consists of a two-
dimensional table T with dln 1/δe rows. Each row consists of
de/εe entries. Each entry must be of size at least logN bits.5

A Count Min Sketch has dln 1/δe hash functions, one for
each row of the table. In this way, the CMS essentially consists
of dln 1/δe independent hash tables stored in one location.

To initialize the structure, we set all entries in T to 0.

Insert To insert an item xi, we iterate through each row of
the CMS. For each row, we hash xi, and increment the counter
stored at that hash location.

Query To query q, we iterate through each row of the CMS.
For each row, we hash q, and keep track of the value stored at
that location. We return the minimum such value found. This

value is an estimate of how many times q occurred during the stream: that is to say, it estimates |{i | xi = q}|.
2For example, this 2007 course at MIT: http://stellar.mit.edu/S/course/6/fa07/6.895/materials.html.
3Scans also tend to avoid branch mispredictions and other practical inefficiencies.
4You may notice that if our goal cache-efficiency, there’s an opportunity for a tradeoff: I can scan the data multiple times,

resulting in an increase in I/O cost, but with a second chance to see important data items. Can seeing a stream several times
lead to more efficient methods? In short, the answer is frequently yes. This is called the “multi pass” streaming model. While
this model is fairly popular we will not be looking at it in this class.

5In practice, one would just choose 16, 32, or 64 bit entries depending on the size of the stream.

2

3.1 Bounds

A Count Min Sketch gives the following guarantee. Let q ∈ U be any query, let oq be the value given by the
query algorithm on q, and let ôq be the true number of occurences of q in the stream (i.e. ôq = |{i | xi = q}|).
Then we have the following two guarantees:

1. ôq ≤ oq, and

2. with probability at least 1− δ, oq ≤ ôq + εN .

Multiplying the number of rows, number of columns, and size of each entry, we can see that the Count Min
Sketch requires de/εe dln 1/δe dlogNe bits.

4 HyperLogLog

The HyperLogLog data structure is much smaller than Count Min Sketch. It does not attempt to retain
the number of occurrences for each individual count. Rather, it attempts to estimate the number of distinct
items in the stream. That is to say, it estimates |{xi | i ∈ {1, . . . N}}|.

Structure The HyperLogLog data structure consists of an array M of counters, where M is of length m
(we assume m is a power of 2). Each counter should have at least log log n bits; in practice 8-bit counters
are sufficient for any application.6 The HyperLogLog data structure also requires a (single) hash function,
which we will call h.

Algorithm 3 Insert xi

j ← h(xi) log2m
r ← h(xi)>> log2m
z ← # trailing 0s of r
if M [j] < z + 1 then

M [j]← z + 1
end if

Algorithm 4 Query

Z = 0
for j = 0 to m− 1 do

Z ← Z + (1/2)M [j]

end for
return bm2/Z

Insert Inserting xi begins by hashing xi. Process-
ing this hash proceeds in two steps. First, we obtain
an index into the table. Then, we perform a calcu-
lation on the hash.

The first step is to obtain an index j using the
rightmost log2m bits of h(xi).

7 These bits are
then shifted off to obtain a remainder r = h(xi)
>> log2m.

Then, we count the number of trailing zeroes in
the binary representation of r and store that number
in an integer z. (Mathematically, we find the largest
z such that r/2z is an integer.)

We look up M [j]. If M [j] > z+1, we set M [j] =
z + 1. In other words, at every point in time M [j]
stores the largest number of zeroes (plus one!) of
the remainder of any item that hashes to j.

Query The query attempts to estimate how many
distinct items were seen in the stream based on M .
At a high level, the following process constitutes tak-
ing a biased harmonic mean8 of the entries of M .

6In particular, 8-bit counters are sufficient even if your stream consists of all particles in the observable universe—much
larger than any stream you would see on Earth.

7Because m is a power of 2, log2 m is always an integer.
8That is to say, a special kind of average that happens to work particularly well in this setting.

3

m b

16 .673
32 .697
64 .709
≥ 128 .7213/(1 + 1.079/m)

Table 1

To begin, we set a double Z = 0. Then for each j from 0 to m− 1, we
add (1/2)M [j] to Z.

We calculate a bias constant b, which depends on m. Good values of
b can be found in Table 1.

Finally, we return bm2/Z.

Parameters and caveats Using 8 hash bits per element is sufficient
for a stream of any size. In fact, as streams get large, the main parameter
that needs to change is the size of the hash function output. The hash
function output should be large enough that any two elements are unlikely

to collide (after all, if x and y have h(x) = h(y), the HyperLogLog will treat them the same and will not
count them as distinct elements). 32 bits was suggested in the original paper, and is fine for moderate-sized
streams (in fact, for the assignment, I’d suggest you just use one 32-bit output from Murmurhash). However,
streams with billions (or even hundreds of millions) of distinct elements—specifically, streams with close to
232 elements or more—will incur a decrease in quality with 32 bit hashes, and a 64 bit hash should be used
instead.

The value of m is relatively small in the assignment, but is often moderately large in practice. Counters
are cheap, so one often sees m = 1024 or m = 2048 to give improved estimates.

For streams where the number of distinct elements is very small (less than 5m/2) or very large (close to
232 with 32-bit hashes), one can still use the same data structure, but should calculate the approximate set
size using an alternate method. We won’t be dealing with these methods in class, but they are important
for implementing this structure in practice.

Guarantees? You are not expected to know the guarantees of this algorithm in this class, but I include
them here for completeness. Let D be the number of distinct elements in the stream. The expected output of
HyperLogLog is D itself—great, but how often is it going to be close to that? To get an idea of how frequently
this happens, the standard error9 of D is 1.04/

√
m. It appears that the outputs given by HyperLogLog are

close to a Gaussian distribution. Therefore, the estimate should be within a 1.04/
√
m factor of D 65% of

the time, and should be within a 2.08/
√
m factor of D 95% of the time.

9This is essentially the standard deviation multiplied by the correct estimate D.

4

