Lecture 11: Streaming (Updated)

Sam McCauley April 20, 2020

Williams College

Introduction

• Modern companies deal with extremely large data

- Modern companies deal with extremely large data
- Can't even store all of it sometimes!

- Modern companies deal with extremely large data
- Can't even store all of it sometimes!
- If is possible to store, can be very difficult to access particular pieces

• You receive a "stream" of items one by one

- You receive a "stream" of items one by one
- Stream is incredibly long; you can't store all of the items (only log(items)!)

- You receive a "stream" of items one by one
- Stream is incredibly long; you can't store all of the items (only log(items)!)
- Can't move forward or backward either; just come in one at a time

• Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)
- What can we do in this situation?

- Normally you're used to getting your data all at once, with the ability to store all of it, and access random pieces whenever you want.
- Now, a worst-case adversary is feeding you tiny pieces of information one-by-one, in whatever order they want
- You can only store $O(\log N)$ bytes of space, or maybe even O(1)
- What can we do in this situation?
- Note: very active area of research

• Much more extreme "compression" than a filter

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures
 - Count-min sketch: More aggressive than a filter. Good guarantees for counting how many times a given element occurred in a stream.

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures
 - Count-min sketch: More aggressive than a filter. Good guarantees for counting how many times a given element occurred in a stream.
 - HyperLogLog: Only uses a few bytes. Estimates how many unique items appeared in the stream.

- Much more extreme "compression" than a filter
- (Filter used a constant number of bits per item; we can't afford that)
- Today: two data structures
 - Count-min sketch: More aggressive than a filter. Good guarantees for counting how many times a given element occurred in a stream.
 - HyperLogLog: Only uses a few bytes. Estimates how many unique items appeared in the stream.
- Note: no proofs today :(. The math behind these structures requires too much background

• Data streams: network traffic, user inputs, telephone traffic, etc.

• Data streams: network traffic, user inputs, telephone traffic, etc.

• Cache-efficiency! Streaming algorithms only require you to scan the data once.

• DDOS attack: keep track of IP addresses that appear too often

- DDOS attack: keep track of IP addresses that appear too often
- Keep track of popular passwords

- DDOS attack: keep track of IP addresses that appear too often
- Keep track of popular passwords
- Google uses an improved HyperLogLog to speed up searches

- DDOS attack: keep track of IP addresses that appear too often
- Keep track of popular passwords
- Google uses an improved HyperLogLog to speed up searches
- Reddit uses HyperLogLog to estimate views of a post

Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

Goal:

• Maintain a data structure on a stream of items

• At any time, estimate how frequently a given item appeared

adhesive

flawless

closed

adhesive

describe

closed

illustrious
describe

describe

flawless

street

closed

describe

• Now, answer questions of the form: how many times did some item *x_i* occur in the stream?

• Now, answer questions of the form: how many times did some item *x_i* occur in the stream?

• Example: how many times did adhesive appear? How about closed?

• Now, answer questions of the form: how many times did some item *x_i* occur in the stream?

- Example: how many times did adhesive appear? How about closed?
 - (2 times and 3 times respectively)

• See a stream of elements $x_1, \ldots x_N$, each from a universe U^1

 $^{{}^{1}\}mbox{Like}$ in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \ldots x_N$, each from a universe U^1
- For some element e ∈ U, estimate how many i exist with x_i = e?

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \ldots x_N$, each from a universe U^1
- For some element e ∈ U, estimate how many i exist with x_i = e?
- Today: pretty decent guess using [^e/_ε] ln(1/δ) log₂ N bits of space
 Space

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \ldots x_N$, each from a universe U^1
- For some element e ∈ U, estimate how many i exist with x_i = e?
- Today: pretty decent guess using [^e/_ε] ln(1/δ) log₂ N bits of space
 - + ε and δ are parameters we can use to adjust the error

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

- See a stream of elements $x_1, \ldots x_N$, each from a universe U^1
- For some element e ∈ U, estimate how many i exist with x_i = e?
- Today: pretty decent guess using [e/ε] ln(1/δ) log₂ N bits of space
 - + ε and δ are parameters we can use to adjust the error
 - Don't depend on N, or |U|

¹Like in the last lecture, this is just a requirement to make sure that we can hash them.

• Keep a hash table with all elements

- Keep a hash table with all elements
- Increment the counter each time you see an element

- Keep a hash table with all elements
- Increment the counter each time you see an element
- O(n) space, O(1) time per query

- Keep a hash table with all elements
- Increment the counter each time you see an element
- O(n) space, O(1) time per query
- Pretty efficient! But we want way way less space.

• Randomly sampling:

- Randomly sampling:
 - Keep n/100 slots
 - For each item, with probability 1/100, write the item down.

- Randomly sampling:
 - Keep n/100 slots
 - For each item, with probability 1/100, write the item down.
- If an item appears k times in the stream, we see it k/100 times in expectation.

- If an item appears k times in the stream, we see it k/100 times in expectation.
- So, if we wrote an item down w times, we can estimate that it probably occurred 100w times in the stream.

- But it's pretty loose. If our counter is just one off, that changes our guess by +100
- Could have a fairly frequent item that we never write down.
- Miss lots of information!

 Maintain a hash table A with 1/ε entries of at least ⌈log N⌉ bits

- Maintain a hash table A with 1/ε entries of at least ⌈log N⌉ bits
- Hash function *h* for *A*

- Maintain a hash table A with 1/ε entries of at least ⌈log N⌉ bits
- Hash function *h* for *A*
- When we see an item x_i:

- Maintain a hash table A with 1/ε entries of at least ⌈log N⌉ bits
- Hash function *h* for *A*
- When we see an item x_i:
 - Increment $A[h(x_i)]$

- Maintain a hash table A with 1/ε entries of at least ⌈log N⌉ bits
- Hash function h for A
 When we see an item x_i:
 Increment A[h(x_i)]

- Maintain a hash table A with 1/ε entries of at least ⌈log N⌉ bits
- Hash function *h* for *A*
- When we see an item x_i:
 - Increment $A[h(x_i)]$
- How can we query?

• Return A[h(q)]

- Return A[h(q)]
- What guarantees does this give?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences

How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences

Since we always increase this counter when we see $x_i = q$

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences

But, also increase it when $h(x_i) = h(q)$, but $x_i \neq q$
How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences
 - How much does it overestimate by?

How can we query q?

- Return A[h(q)]
- What guarantees does this give?
 - Always overestimates the number of occurrences
 - How much does it overestimate by?
 - Each of N items hashes to same slot with probability ε , so $N\varepsilon$ in expectation

Second attempt: hash counts

Expectation is not that great!

Second attempt: hash counts

Expectation is not that great!

• Let's say we have two items; A appears 100 times and B appears 900

Second attempt: hash counts

Expectation is not that great!

- Let's say we have two items; A appears 100 times and B appears 900
- Query A: with probability 1ε we get 100; with probability ε we get 1000

• To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
- How can you increase the reliability of a random process?

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
- How can you increase the reliability of a random process?
- For example, let's say we're rolling a die. We want to be sure we see a 6 at least once. How can we do that?

- To guarantee a high-quality answer, we want to say that the solution is *likely* to be close to correct.
- How can you increase the reliability of a random process?
- For example, let's say we're rolling a die. We want to be sure we see a 6 at least once. How can we do that?
- Of course: roll the die many times!

 Rather than having one hash table A, let's have a two-dimensional hash table T

- Rather than having one hash table A, let's have a two-dimensional hash table T
- T has $\lceil \ln(1/\delta) \rceil$ rows

- Rather than having one hash table A, let's have a two-dimensional hash table T We'll use δ later.
- T has $\lceil \ln(1/\delta) \rceil$ rows

• Different hash function for each row

- Rather than having one hash table *A*, let's have a two-dimensional hash table *T*
- T has $\lceil \ln(1/\delta) \rceil$ rows
- Each row consists of $\lceil e/\varepsilon \rceil$ slots
- Different hash function for each row

- Rather than having one hash table *A*, let's have a two-dimensional hash table *T*
- T has $\lceil \ln(1/\delta) \rceil$ rows

The *e* is important for the analysis.

- Each row consists of $\lceil e/\varepsilon \rceil$ slots
- Different hash function for each row

To insert x_i :

• For
$$j = 0 \dots \lceil \ln(1/\delta) \rceil - 1$$
:

To insert x_i :

• For
$$j = 0 \dots \lceil \ln(1/\delta) \rceil - 1$$
:

• Increment $T[j][h_j(x_i)]$

To insert x_i :

• For
$$j = 0 \dots \lceil \ln(1/\delta) \rceil - 1$$
:

• Increment $T[j][h_j(x_i)]$

We now have $\lceil \ln(1/\delta)\rceil$ counters for each item. How can we query?

Each entry is an overestimate.

Each entry is an overestimate.

• Find min_j $T[j][h_j(x_i)]$.

• Table T with $\lceil \ln(1/\delta) \rceil$ rows, each with $\lceil e/\varepsilon \rceil$ columns. Cells of size $\lceil \log N \rceil$

- Table *T* with $\lceil \ln(1/\delta) \rceil$ rows, each with $\lceil e/\varepsilon \rceil$ columns. Cells of size $\lceil \log N \rceil$
- $\lceil \ln(1/\delta) \rceil$ hash functions; one for each row

- Table *T* with [ln(1/δ)] rows, each with [e/ε] columns. Cells of size [log N]
- $\lceil \ln(1/\delta) \rceil$ hash functions; one for each row
- To insert x: set $T[j][h_j(x)]$ for all $j = 0, ... \lceil \ln(1/\delta) \rceil 1$

- Table *T* with [ln(1/δ)] rows, each with [e/ε] columns. Cells of size [log N]
- $\lceil \ln(1/\delta) \rceil$ hash functions; one for each row
- To insert x: set $T[j][h_j(x)]$ for all $j = 0, ... \lceil \ln(1/\delta) \rceil 1$
- To query q: return $\min_{j \in \{0,...,\lceil \ln(1/\delta) \rceil 1\}} T[j][h_j(q)]$

• On query q, let's say the filter returns that there were o_q occurrences

Count-Min Sketch Guarantee

• In reality, the correct answer is $\widehat{o_q}$ occurrences

- On query *q*, let's say the filter returns that there were *o_q* occurrences
- In reality, the correct answer is $\widehat{o_q}$ occurrences
- First: always have $\widehat{o_q} \leq o_q$.

- On query *q*, let's say the filter returns that there were *o_q* occurrences
- In reality, the correct answer is $\hat{o_q}$ occurrences
- First: always have $\widehat{o_q} \leq o_q$.
- Second: With probability 1δ , $o_q \leq \hat{o_q} + \varepsilon N$

- $\left\lceil \frac{e}{\varepsilon} \right\rceil \left\lceil \ln \frac{1}{\delta} \right\rceil \left\lceil \log_2 N \right\rceil$ bits of space
- For any query q, if the filter returns o_q and the actual number of occurrences is ô_q, then with probability 1 − δ:

$$\widehat{o_q} \leq o_q \leq \widehat{o_q} + \varepsilon N.$$

q

28	10	78	9	26	69	39	28
85	40	52	70	11	84	65	99
56	82	34	75	99	35	14	55
10	20	17	80	92	89	71	13
0	1	2	3	4	5	6	7

q									
						h1((a)		
						"1((H) \		
			r				1		
28	10	78	9	26	69	39	28		
85	40	52	70	11	84	65	99		
56	82	34	75	99	35	14	55		
10	20	17	80	92	89	71	13		
0	1	2	3	4	5	6	7		

Example Query

\bigwedge^q									
$h_2(q)$ $h_1(q)$									
28	10	78	9	26	69	39	28		
85	40	52	70	11	84	65	99		
56	82	34	75	99	35	14	55		
10	20	17	80	92	89	71	13		
0	1	2	3	4	5	6	7		

Example Query

q									
λ									
$h_2(q)$ $h_2(r)$									
	$n_1($	(4)							
			1	/			Ĵ		
28	10	78	9	26	69	39	28		
85	40	52	70	11	84	65	99		
56	82	34	75	99	35	14	55		
10	20	17	80	92	89	71	13		
0	1	2	3	4	5	6	7		

Example Query

q									
		$h_2(a$		$\langle -$					
		211		$\langle \rangle$	$a_{1}(\alpha)$	$h_{1}($	<i>q</i>)		
			h ₃ (q) <	14(4)		Λ.		
							\uparrow		
28	10	78	9	26	69	39	28		
85	40	52	70	11	84	65	99		
56	82	34	75	99	35	14	55		
10	20	17	80	92	89	71	13		
0	1	2	3	4	5	6	7		

q									
		h ₂ (q) h ₃ (q		$n_4(q)$	h ₁ (q)		
28	10	78	9	26	69	39	28		
85	40	52	70	11	84	65	99		
56	82	34	75	99	35	14	55		
10	20	17	80	92	89	71	13		
0	1	2	3	4	5	6	7		

The estimated number of occurrences for q is 28.

• Small sketch (size based on error rate)

- Small sketch (size based on error rate)
- Always overestimates count

- Small sketch (size based on error rate)
- Always overestimates count
- Bound on overestimation is based on stream length

• 300 entries in each row, 4 rows

- 300 entries in each row, 4 rows
- 32-bit counters (wasteful!)

- 300 entries in each row, 4 rows
- 32-bit counters (wasteful!)
- 7.3MB of data summarized in 4.8KB

- 300 entries in each row, 4 rows
- 32-bit counters (wasteful!)
- 7.3MB of data summarized in 4.8KB
- Really accurate still: in 1.2 million word stream, can estimate num occurrences of each word within +1500

- 300 entries in each row, 4 rows
- 32-bit counters (wasteful!)
- 7.3MB of data summarized in 4.8KB
- Really accurate still: in 1.2 million word stream, can estimate num occurrences of each word within +1500
- Often more accurate! Also: feel free to try 1000 or 10000 entries per row; it gets quite accurate

Hyper Log Log Counting

• Count-min sketch takes up a lot of space!

- Count-min sketch takes up a lot of space!
- OK not really. But, it stores a lot of information about the stream

- Count-min sketch takes up a lot of space!
- OK not really. But, it stores a lot of information about the stream
- Common question: how many unique elements are there in the stream?

- Count-min sketch takes up a lot of space!
- OK not really. But, it stores a lot of information about the stream
- Common question: how many unique elements are there in the stream?
- (Compare to CMS: stores approximately how many there are of *each* element)

• Let's hash each item as it comes in

- Let's hash each item as it comes in
- Then instead of a list of items, we get a list of random hashes

- Let's hash each item as it comes in
- Then instead of a list of items, we get a list of random hashes
- Idea: let's look at a rare event in these hashes. The more often it happens, the more distinct hashes we must be seeing!

- Let's hash each item as it comes in
- Then instead of a list of items, we get a list of random hashes
- Idea: let's look at a rare event in these hashes. The more often it happens, the more distinct hashes we must be seeing!
- In particular: how many 0s does each hash end with?

Hashes ending in 0s

• What is the probability that a hash ends in 10 0's? Answer: $1/1024\,$

Hashes ending in 0s

- What is the probability that a hash ends in 10 0's? Answer: $1/1024\,$
- So if we only see two different hashes, it's very unlikely that either will end in 10 0's.

Hashes ending in 0s

- What is the probability that a hash ends in 10 0's? Answer: $1/1024\,$
- So if we only see two different hashes, it's very unlikely that either will end in 10 0's.
- If we see $2^{10} = 1024$ distinct hashes, it's pretty likely that one will end with 10 0's.

Hashes ending in Os

- What is the probability that a hash ends in 10 0's? Answer: 1/1024
- So if we only see two different hashes, it's very unlikely that either will end in 10 0's.
- If we see $2^{10} = 1024$ distinct hashes, it's pretty likely that one will end with 10 0's.
- Note "distinct!" All of this comes back to estimating how many *unique* elements there are. Unique elements give a new hash, and a new opportunity for many zeroes. Non-unique elements don't give a new hash.
1101110101001100

How many unique items were there?

Example 2

You see the following hashes one by one:

0010110010111101

How many unique items were there? Was it more or less than the last one?

• Answer: 1st had 14 items, 2nd had 3

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0
 - Extremely unlikely if there were 14 different elements!

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0
 - Extremely unlikely if there were 14 different elements!
- One of the items in the first example ended with 4 0's

- Answer: 1st had 14 items, 2nd had 3
- Notice that only one hash in the second example ended with 0
 - Extremely unlikely if there were 14 different elements!
- One of the items in the first example ended with 4 0's
 - Unlikely if there were 2 elements!

• Let's say that the hash ending with the most 0s has k 0s at the end

Intuitive loglog counting

- Let's say that the hash ending with the most 0s has k 0s at the end
- Any given hash has k 0s with probability $1/2^k$

Intuitive loglog counting

- Let's say that the hash ending with the most 0s has k 0s at the end
- Any given hash has k 0s with probability $1/2^k$
- So it seems that, there are probably something like 2^k items

Intuitive loglog counting

- Let's say that the hash ending with the most 0s has k 0s at the end
- Any given hash has k 0s with probability $1/2^k$
- So it seems that, there are probably something like 2^k items
- But if we're just off by 1 or 2 zeroes, that affects our answer by a lot!

 How do we improve the estimation of a random process? Repeat!

Improving reliability

- How do we improve the estimation of a random process? Repeat!
- Hash each item first to one of several counters

Improving reliability

- How do we improve the estimation of a random process? Repeat!
- Hash each item first to one of several counters
- For each counter, keep track of 1 + the maximum number of 0s of items hashed to that counter
Improving reliability

- How do we improve the estimation of a random process? Repeat!
- Hash each item first to one of several counters
- For each counter, keep track of 1 + the maximum number of 0s of items hashed to that counter
- For CMS, we took the min. What do we do here to combine the estimates?

Improving reliability

- How do we improve the estimation of a random process? Repeat!
- Hash each item first to one of several counters
- For each counter, keep track of 1 + the maximum number of 0s of items hashed to that counter
- For CMS, we took the min. What do we do here to combine the estimates?
- Answer: It's complicated. (And outside the scope of the course.)

• Keep an array of *m* counters (*m* is a power of 2); let's call it *M*

- Keep an array of *m* counters (*m* is a power of 2); let's call it *M*
- Hash each item as it comes in. Then:

- Keep an array of *m* counters (*m* is a power of 2); let's call it *M*
- Hash each item as it comes in. Then:
 - Get an index *i*, consisting of the lowest log₂ *m* bits of *h*(*x*). Shift off these bits.

- Keep an array of *m* counters (*m* is a power of 2); let's call it *M*
- Hash each item as it comes in. Then:
 - Get an index *i*, consisting of the lowest log₂ *m* bits of *h*(*x*). Shift off these bits.
 - Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set M[i] = z + 1

- Keep an array of *m* counters (*m* is a power of 2); let's call it *M*
- Hash each item as it comes in. Then:
 - Get an index *i*, consisting of the lowest log₂ *m* bits of *h*(*x*). Shift off these bits.
 - Look at the remaining bits. Let z be the number of zeroes. If z + 1 > M[i], set M[i] = z + 1
- Make sure to add 1 to your count of the number of zeroes

• At the end, we have an array M, each containing a count

 $^{^{2}\}mbox{You}$ have to look this constant up.

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

$$Z = \sum_{i=0}^{m-1} \left(\frac{1}{2}\right)^{M[i]}$$

²You have to look this constant up.

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let
$$Z = \sum_{i=0}^{m-1} \left(\frac{1}{2}\right)^{M[i]}$$

• Let b be a bias constant.² For m = 32, b = .697.

²You have to look this constant up.

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let
$$Z = \sum_{i=0}^{m-1} \left(\frac{1}{2}\right)^{M[i]}$$

- Let b be a bias constant.² For m = 32, b = .697.
- Return bm^2/Z .

²You have to look this constant up.

 x_1

 x_1

$h(x_1) = 010001000111110111111010101010$

x_1

$h(x_1) = 010001000111110111111010101010$

index = 110 Remaining: 01000100011111011111101010

x_1

$h(x_1) = 010001000111110111111010101010$

index = 110 Remaining: 01000100011111011111101010

x_1

$h(x_1) = 010001000111110111111010101010$

index = 110 Remaining: 01000100011111011111101010

The remaining hash ends with 1 zero, so we want to store 2. The counter stores less than 2, so we store it.

x_1

$h(x_1) = 010001000111110111111010101010$

index = 110 Remaining: 01000100011111011111101010

The remaining hash ends with 1 zero, so we want to store 2. The counter stores less than 2, so we store it.

*x*₂

 X_2

$h(x_2) = 011110001100100001111010010110$

*x*₂

$h(x_2) = 011110001100100001111010010110$

index = 110 Remaining: 011110001100100001111010010110

X_2

$h(x_2) = 011110001100100001111010010110$

index = 110 Remaining: 011110001100100001111010010110

X_2

$h(x_2) = 011110001100100001111010010110$

index = 110 Remaining: 011110001100100001111010010110

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2, so we keep it as-is.

Х3

 X_3

$h(x_3) = 110011011101100000011010000001$

Х3

$h(x_3) = 110011011101100000011010000001$

index = 001 Remaining: 110011011101100000011010000

X_3

$h(x_3) = 110011011101100000011010000001$

index = 001 Remaining: 110011011101100000011010000

X3

$h(x_3) = 110011011101100000011010000001$

index = 001 Remaining: 110011011101100000011010000

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores 0, so we store 5 in the slot.

X3

$h(x_3) = 110011011101100000011010000001$

index = 001 Remaining: 110011011101100000011010000

The remaining hash ends with 4 zeroes, so we want to store 5. The counter stores 0, so we store 5 in the slot.

*X*4

*X*4

$h(x_4) = 1000100111011011011011011011001$

X4

$h(x_4) = 1000100111011011011011011011001$

index = 001 Remaining: 10001001110110110110110110110

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores 5, so we keep the slot as-is.

*X*4

$h(x_4) = 1000100111011011011011011011001$

index = 001 Remaining: 10001001110110110110110110110

*X*4

$h(x_4) = 1000100111011011011011011011001$

index = 001 Remaining: 10001001110110110110110110110

The remaining hash ends with 0 zeroes, so we want to store 1. The counter stores 5, so we keep the slot as-is.

*x*₂

 X_2

$h(x_2) = 011110001100100001111010010110$

*x*₂

$h(x_2) = 011110001100100001111010010110$

index = 110 Remaining: 011110001100100001111010010110

Example (with m = 8; in practice m is higher)

X_2

$h(x_2) = 011110001100100001111010010110$

index = 110 Remaining: 011110001100100001111010010110

Example (with m = 8; in practice m is higher)

X_2

$h(x_2) = 011110001100100001111010010110$

index = 110 Remaining: 011110001100100001111010010110

The remaining hash ends with 1 zero, so we want to store 2. The counter stores 2, so we keep it as-is.

At the end of the day

Have an array of counters:

Have an array of counters:

• Sum up $(1/2)^{M[j]}$ across all j = 0 to m - 1; store in Z

Have an array of counters:

- Sum up $(1/2)^{M[j]}$ across all j = 0 to m 1; store in Z
- Return bm^2/Z . Here m = 8. We would have to look up the value of b for 8. (No one does HyperLogLog with 8)

• How big do our counters need to be?

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash
- Size > log log(number of distinct elements) (hence the *loglog* in the name)

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash
- Size > log log(number of distinct elements) (hence the *loglog* in the name)
- 8-bit counters are good enough, so long as the number of elements in your stream is less than the number of particles in the universe

- How big do our counters need to be?
- Need to be long enough to count the longest string of 0s in any hash
- Size > log log(number of distinct elements) (hence the *loglog* in the name)
- 8-bit counters are good enough, so long as the number of elements in your stream is less than the number of particles in the universe
- Note: one thing to be careful of is hash length. But 64 bit hashes should be good enough for any reasonable application (and 32 bits is usually fine)

• We'll use m = 32 counters

• Bias constant is .697

• HLL does poorly when the number of distinct items is not much more than *m*

- HLL does poorly when the number of distinct items is not much more than *m*
- Or is very very high

- HLL does poorly when the number of distinct items is not much more than *m*
- Or is very very high
- Google developed HyperLogLog++ to help deal with these problems

- HLL does poorly when the number of distinct items is not much more than *m*
- Or is very very high
- Google developed HyperLogLog++ to help deal with these problems
- Other known improvements as well

One More Cool Thing

• Facebook developed an HLL-based algorithm to calculate the *diameter* of a graph

One More Cool Thing

- Facebook developed an HLL-based algorithm to calculate the *diameter* of a graph
- Usually takes $O(n^2)$ time!

One More Cool Thing

- Facebook developed an HLL-based algorithm to calculate the *diameter* of a graph
- Usually takes $O(n^2)$ time!
- Theirs is essentially linear, gives extremely accurate results