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Introduction



Really Large Data

• Modern companies deal

with extremely large data

• Can’t even store all of it

sometimes!

• If is possible to store, can

be very difficult to access

particular pieces
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Stream

• You receive a “stream” of

items one by one

• Stream is incredibly long;

you can’t store all of the

items (only log(items)!)

• Can’t move forward or

backward either; just come

in one at a time
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Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research
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What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background
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When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic,

etc.

• Cache-efficiency! Streaming algorithms only require you to

scan the data once.
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Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6



Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6



Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6



Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6



Count-Min Sketch



Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• At any time, estimate how frequently a given item appeared
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Example

You see the following items one by one:
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Example

• Now, answer questions of the form: how many times did some

item xi occur in the stream?

• Example: how many times did adhesive appear? How about
closed?

• (2 times and 3 times respectively)
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Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element e ∈ U, estimate how many i exist with

xi = e?

• Today: pretty decent guess using
⌈
e
ε

⌉
ln(1/δ) log2N bits of

space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.
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How would you do this with what you know right now?

• Keep a hash table with all

elements

• Increment the counter each

time you see an element

• O(n) space, O(1) time per

query

• Pretty efficient! But we

want way way less space.
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Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12



Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12



Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12



Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12



Sketching: A first attempt

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

• So, if we wrote an item

down w times, we can

estimate that it probably

occurred 100w times in the

stream.
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Sketching: A first attempt

• But it’s pretty loose. If our

counter is just one off, that

changes our guess by +100

• Could have a fairly frequent

item that we never write

down.

• Miss lots of information!
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Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi )]

Counters of

length dlogNe
to have room

• How can we query?
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Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi ) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation
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Second attempt: hash counts

Expectation is not that great!

• Let’s say we have two

items; A appears 100 times

and B appears 900

• Query A: with probability

1− ε we get 100; with

probability ε we get 1000
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What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18



What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18



What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18



What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18



Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll use δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

19
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Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:

• Increment T [j ][hj(xi )]

We now have dln(1/δ)e counters for each item. How can we

query?

20
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Queries

Each entry is an overestimate.

• Find minj T [j ][hj(xi )].

21



Queries

Each entry is an overestimate.

• Find minj T [j ][hj(xi )].
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Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells

of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : set T [j ][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j ][hj(q)]

22
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Count-Min Sketch Guarantee

• On query q, let’s say the filter returns that there were oq

occurrences

So oq =

minj T [j ][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.

• Second: With probability 1− δ, oq ≤ ôq + εN

23
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Count-Min Sketch Bounds

•
⌈
e
ε

⌉ ⌈
ln 1

δ

⌉
dlog2Ne bits of space

• For any query q, if the filter returns oq and the actual number

of occurrences is ôq, then with probability 1− δ:

ôq ≤ oq ≤ ôq + εN.
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Example Insert

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

h3(x)
h4(x)
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Example Insert
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Example Insert

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)
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Example Insert
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Example Insert
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0 1 2 3 4 5 6 7
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Example Insert

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)

h4(y)

26



Example Insert

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)

26



Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.
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Count-Min Sketch

• Small sketch (size based on

error rate)

• Always overestimates count

• Bound on overestimation is

based on stream length

28
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Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within +1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

29
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Hyper Log Log Counting



Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the

stream

• Common question: how many unique elements are there in

the stream?

• (Compare to CMS: stores approximately how many there are

of each element)
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Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more

often it happens, the more distinct hashes we must be seeing!

• In particular: how many 0s does each hash end with?
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Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32



Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32



Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32



Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32



Example

You see the following hashes one by one:

33

0010001010101001
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Example

You see the following hashes one by one:
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Example

You see the following hashes one by one:

33

0000001011000011



Example

You see the following hashes one by one:

33

0110010010011100



Example

You see the following hashes one by one:

33

1000101011100001



Example

You see the following hashes one by one:

33

0110100100111101



Example

You see the following hashes one by one:

33

0011101001100010



Example

You see the following hashes one by one:

33

0110000000001110



Example

You see the following hashes one by one:

33

0011001110001111



Example

You see the following hashes one by one:

33

1111100010110000



Example

You see the following hashes one by one:

33

1111110101011100



Example

You see the following hashes one by one:

33

1100010011010011



Example

You see the following hashes one by one:

How many unique items were there?

33

1101110101001100



Example 2

You see the following hashes one by one:

34

0010001010101001
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Example 2

You see the following hashes one by one:
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0010110010111101



Example 2

You see the following hashes one by one:

34

0010001010101001



Example 2

You see the following hashes one by one:

How many unique items were there? Was it more or less than the

last one?

34

0010110010111101



Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!
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Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at

the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But if we’re just off by 1 or 2 zeroes, that affects our answer

by a lot!

36
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Improving reliability

• How do we improve the estimation of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s of items hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

37
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HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i ], set M[i ] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

38
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Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1

2

)M[i ]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.
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Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.
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Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.
40



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

41



Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0
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Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.
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Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.
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Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.
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At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the

value of b for 8. (No one does HyperLogLog with 8)
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Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)
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HLL in the Assignment

• We’ll use m = 32 counters

• Bias constant is .697
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HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not

much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these

problems

• Other known improvements as well
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One More Cool Thing

• Facebook developed an

HLL-based algorithm to

calculate the diameter of a

graph

• Usually takes O(n2) time!

• Theirs is essentially linear,

gives extremely accurate

results
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