
Lecture 11: Streaming (Updated)

Sam McCauley

April 20, 2020

Williams College

Introduction

Really Large Data

• Modern companies deal

with extremely large data

• Can’t even store all of it

sometimes!

• If is possible to store, can

be very difficult to access

particular pieces

1

Really Large Data

• Modern companies deal

with extremely large data

• Can’t even store all of it

sometimes!

• If is possible to store, can

be very difficult to access

particular pieces

1

Really Large Data

• Modern companies deal

with extremely large data

• Can’t even store all of it

sometimes!

• If is possible to store, can

be very difficult to access

particular pieces

1

Stream

• You receive a “stream” of

items one by one

• Stream is incredibly long;

you can’t store all of the

items (only log(items)!)

• Can’t move forward or

backward either; just come

in one at a time

2

Stream

• You receive a “stream” of

items one by one

• Stream is incredibly long;

you can’t store all of the

items (only log(items)!)

• Can’t move forward or

backward either; just come

in one at a time

2

Stream

• You receive a “stream” of

items one by one

• Stream is incredibly long;

you can’t store all of the

items (only log(items)!)

• Can’t move forward or

backward either; just come

in one at a time

2

Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research

3

Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research

3

Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research

3

Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research

3

Streaming Model

• Normally you’re used to getting your data all at once, with

the ability to store all of it, and access random pieces

whenever you want.

• Now, a worst-case adversary is feeding you tiny pieces of

information one-by-one, in whatever order they want

• You can only store O(logN) bytes of space, or maybe even

O(1)

• What can we do in this situation?

• Note: very active area of research

3

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background

4

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background

4

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background

4

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background

4

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background

4

What We Really Want

• Much more extreme “compression” than a filter

• (Filter used a constant number of bits per item; we can’t

afford that)

• Today: two data structures

• Count-min sketch: More aggressive than a filter. Good

guarantees for counting how many times a given element

occurred in a stream.

• HyperLogLog: Only uses a few bytes. Estimates how many

unique items appeared in the stream.

• Note: no proofs today :(. The math behind these structures

requires too much background

4

When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic,

etc.

• Cache-efficiency! Streaming algorithms only require you to

scan the data once.

5

When to Use Streaming Algorithms?

• Data streams: network traffic, user inputs, telephone traffic,

etc.

• Cache-efficiency! Streaming algorithms only require you to

scan the data once.

5

Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6

Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6

Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6

Actual Applications

• DDOS attack: keep track of IP addresses that appear too

often

• Keep track of popular passwords

• Google uses an improved HyperLogLog to speed up searches

• Reddit uses HyperLogLog to estimate views of a post

6

Count-Min Sketch

Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• At any time, estimate how frequently a given item appeared

7

Count-Min Sketch

Goal:

• Maintain a data structure on a stream of items

• At any time, estimate how frequently a given item appeared

7

Example

You see the following items one by one:

8

adhesive

Example

You see the following items one by one:

8

flawless

Example

You see the following items one by one:

8

closed

Example

You see the following items one by one:

8

adhesive

Example

You see the following items one by one:

8

describe

Example

You see the following items one by one:

8

closed

Example

You see the following items one by one:

8

sea

Example

You see the following items one by one:

8

illustrious

Example

You see the following items one by one:

8

describe

Example

You see the following items one by one:

8

describe

Example

You see the following items one by one:

8

flawless

Example

You see the following items one by one:

8

street

Example

You see the following items one by one:

8

closed

Example

You see the following items one by one:

8

describe

Example

• Now, answer questions of the form: how many times did some

item xi occur in the stream?

• Example: how many times did adhesive appear? How about
closed?

• (2 times and 3 times respectively)

9

Example

• Now, answer questions of the form: how many times did some

item xi occur in the stream?

• Example: how many times did adhesive appear? How about
closed?

• (2 times and 3 times respectively)

9

Example

• Now, answer questions of the form: how many times did some

item xi occur in the stream?

• Example: how many times did adhesive appear? How about
closed?

• (2 times and 3 times respectively)

9

Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element e ∈ U, estimate how many i exist with

xi = e?

• Today: pretty decent guess using
⌈
e
ε

⌉
ln(1/δ) log2N bits of

space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.

10

Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element e ∈ U, estimate how many i exist with

xi = e?

• Today: pretty decent guess using
⌈
e
ε

⌉
ln(1/δ) log2N bits of

space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.

10

Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element e ∈ U, estimate how many i exist with

xi = e?

• Today: pretty decent guess using
⌈
e
ε

⌉
ln(1/δ) log2N bits of

space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.

10

Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element e ∈ U, estimate how many i exist with

xi = e?

• Today: pretty decent guess using
⌈
e
ε

⌉
ln(1/δ) log2N bits of

space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.

10

Formally

• See a stream of elements x1, . . . xN , each from a universe U1

• For some element e ∈ U, estimate how many i exist with

xi = e?

• Today: pretty decent guess using
⌈
e
ε

⌉
ln(1/δ) log2N bits of

space

• ε and δ are parameters we can use to adjust the error

• Don’t depend on N, or |U|

1Like in the last lecture, this is just a requirement to make sure that we can

hash them.

10

How would you do this with what you know right now?

• Keep a hash table with all

elements

• Increment the counter each

time you see an element

• O(n) space, O(1) time per

query

• Pretty efficient! But we

want way way less space.

11

How would you do this with what you know right now?

• Keep a hash table with all

elements

• Increment the counter each

time you see an element

• O(n) space, O(1) time per

query

• Pretty efficient! But we

want way way less space.

11

How would you do this with what you know right now?

• Keep a hash table with all

elements

• Increment the counter each

time you see an element

• O(n) space, O(1) time per

query

• Pretty efficient! But we

want way way less space.

11

How would you do this with what you know right now?

• Keep a hash table with all

elements

• Increment the counter each

time you see an element

• O(n) space, O(1) time per

query

• Pretty efficient! But we

want way way less space.

11

Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12

Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12

Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12

Sketching: A first attempt

• Randomly sampling:

• Keep n/100 slots

• For each item, with

probability 1/100, write

the item down.

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

12

Sketching: A first attempt

• If an item appears k times

in the stream, we see it

k/100 times in expectation.

• So, if we wrote an item

down w times, we can

estimate that it probably

occurred 100w times in the

stream.

13

Sketching: A first attempt

• But it’s pretty loose. If our

counter is just one off, that

changes our guess by +100

• Could have a fairly frequent

item that we never write

down.

• Miss lots of information!

14

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

15

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

15

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

15

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

15

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

15

Second attempt: hash counts

• Maintain a hash table A with 1/ε entries of at least dlogNe
bits

• Hash function h for A

• When we see an item xi :

• Increment A[h(xi)]

Counters of

length dlogNe
to have room

• How can we query?

15

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

How can we query q?

• Return A[h(q)]

• What guarantees does this give?

• Always overestimates the number of occurrences

Since we always

increase this

counter when

we see xi = q

But, also increase it

when h(xi) = h(q),

but xi 6= q

• How much does it overestimate by?

• Each of N items hashes to same slot with probability ε, so Nε

in expectation

16

Second attempt: hash counts

Expectation is not that great!

• Let’s say we have two

items; A appears 100 times

and B appears 900

• Query A: with probability

1− ε we get 100; with

probability ε we get 1000

17

Second attempt: hash counts

Expectation is not that great!

• Let’s say we have two

items; A appears 100 times

and B appears 900

• Query A: with probability

1− ε we get 100; with

probability ε we get 1000

17

Second attempt: hash counts

Expectation is not that great!

• Let’s say we have two

items; A appears 100 times

and B appears 900

• Query A: with probability

1− ε we get 100; with

probability ε we get 1000

17

What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18

What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18

What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18

What do we really want?

• To guarantee a high-quality answer, we want to say that the

solution is likely to be close to correct.

• How can you increase the reliability of a random process?

• For example, let’s say we’re rolling a die. We want to be sure

we see a 6 at least once. How can we do that?

• Of course: roll the die many times!

18

Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll use δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

19

Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll use δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

19

Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll use δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

19

Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll use δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

19

Repetitions

• Rather than having one hash table A, let’s have a

two-dimensional hash table T

• T has dln(1/δ)e rows

We’ll use δ later.

• Each row consists of de/εe slots

The e is im-

portant for

the analysis.

• Different hash function for each row

19

Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:

• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we

query?

20

Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:

• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we

query?

20

Inserts

To insert xi :

• For j = 0 . . . dln(1/δ)e − 1:

• Increment T [j][hj(xi)]

We now have dln(1/δ)e counters for each item. How can we

query?

20

Queries

Each entry is an overestimate.

• Find minj T [j][hj(xi)].

21

Queries

Each entry is an overestimate.

• Find minj T [j][hj(xi)].

21

Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells

of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : set T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]

22

Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells

of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : set T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]

22

Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells

of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : set T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]

22

Count-Min Sketch

• Table T with dln(1/δ)e rows, each with de/εe columns. Cells

of size dlogNe

• dln(1/δ)e hash functions; one for each row

• To insert x : set T [j][hj(x)] for all j = 0, . . . dln(1/δ)e − 1

• To query q: return minj∈{0,...,dln(1/δ)e−1} T [j][hj(q)]

22

Count-Min Sketch Guarantee

• On query q, let’s say the filter returns that there were oq

occurrences

So oq =

minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.

• Second: With probability 1− δ, oq ≤ ôq + εN

23

Count-Min Sketch Guarantee

• On query q, let’s say the filter returns that there were oq

occurrences

So oq =

minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.

• Second: With probability 1− δ, oq ≤ ôq + εN

23

Count-Min Sketch Guarantee

• On query q, let’s say the filter returns that there were oq

occurrences

So oq =

minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.

• Second: With probability 1− δ, oq ≤ ôq + εN

23

Count-Min Sketch Guarantee

• On query q, let’s say the filter returns that there were oq

occurrences

So oq =

minj T [j][hj(q)]

• In reality, the correct answer is ôq occurrences

• First: always have ôq ≤ oq.

• Second: With probability 1− δ, oq ≤ ôq + εN

23

Count-Min Sketch Bounds

•
⌈
e
ε

⌉ ⌈
ln 1

δ

⌉
dlog2Ne bits of space

• For any query q, if the filter returns oq and the actual number

of occurrences is ôq, then with probability 1− δ:

ôq ≤ oq ≤ ôq + εN.

24

Example Insert

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

h3(x)
h4(x)

25

Example Insert

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

x

h1(x)

h2(x)
h3(x)

h4(x)

25

Example Insert

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

h3(x)
h4(x)

25

Example Insert

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

h3(x)

h4(x)

25

Example Insert

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

h3(x)
h4(x)

25

Example Insert

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)

26

Example Insert

1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)

26

Example Insert

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)

26

Example Insert

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)

h4(y)

26

Example Insert

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 2 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 1 2 3 4 5 6 7

y

h1(y)

h2(y)

h3(y)
h4(y)

26

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.

27

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)

h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.

27

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.

27

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q)

h4(q)

The estimated number of occurrences for q is 28.

27

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.

27

Example Query

28 10 78 9 26 69 39 28

85 40 52 70 11 84 65 99

56 82 34 75 99 35 14 55

10 20 17 80 92 89 71 13

0 1 2 3 4 5 6 7

q

h1(q)
h2(q)

h3(q) h4(q)

The estimated number of occurrences for q is 28.

27

Count-Min Sketch

• Small sketch (size based on

error rate)

• Always overestimates count

• Bound on overestimation is

based on stream length

28

Count-Min Sketch

• Small sketch (size based on

error rate)

• Always overestimates count

• Bound on overestimation is

based on stream length

28

Count-Min Sketch

• Small sketch (size based on

error rate)

• Always overestimates count

• Bound on overestimation is

based on stream length

28

Count-Min Sketch

• Small sketch (size based on

error rate)

• Always overestimates count

• Bound on overestimation is

based on stream length

28

Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within +1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

29

Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within +1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

29

Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within +1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

29

Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within +1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

29

Parameters in Assignment CMS

• 300 entries in each row, 4 rows

• 32-bit counters (wasteful!)

• 7.3MB of data summarized in 4.8KB

• Really accurate still: in 1.2 million word stream, can estimate

num occurrences of each word within +1500

• Often more accurate! Also: feel free to try 1000 or 10000

entries per row; it gets quite accurate

29

Hyper Log Log Counting

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the

stream

• Common question: how many unique elements are there in

the stream?

• (Compare to CMS: stores approximately how many there are

of each element)

30

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the

stream

• Common question: how many unique elements are there in

the stream?

• (Compare to CMS: stores approximately how many there are

of each element)

30

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the

stream

• Common question: how many unique elements are there in

the stream?

• (Compare to CMS: stores approximately how many there are

of each element)

30

Setting up

• Count-min sketch takes up a lot of space!

• OK not really. But, it stores a lot of information about the

stream

• Common question: how many unique elements are there in

the stream?

• (Compare to CMS: stores approximately how many there are

of each element)

30

Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more

often it happens, the more distinct hashes we must be seeing!

• In particular: how many 0s does each hash end with?

31

Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more

often it happens, the more distinct hashes we must be seeing!

• In particular: how many 0s does each hash end with?

31

Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more

often it happens, the more distinct hashes we must be seeing!

• In particular: how many 0s does each hash end with?

31

Cool way to solve this

• Let’s hash each item as it comes in

• Then instead of a list of items, we get a list of random hashes

• Idea: let’s look at a rare event in these hashes. The more

often it happens, the more distinct hashes we must be seeing!

• In particular: how many 0s does each hash end with?

31

Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32

Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32

Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32

Hashes ending in 0s

• What is the probability that a hash ends in 10 0’s? Answer:

1/1024

• So if we only see two different hashes, it’s very unlikely that

either will end in 10 0’s.

• If we see 210 = 1024 distinct hashes, it’s pretty likely that one

will end with 10 0’s.

• Note “distinct!” All of this comes back to estimating how

many unique elements there are. Unique elements give a new

hash, and a new opportunity for many zeroes. Non-unique

elements don’t give a new hash.

32

Example

You see the following hashes one by one:

33

0010001010101001

Example

You see the following hashes one by one:

33

0010110010111101

Example

You see the following hashes one by one:

33

0001000111101111

Example

You see the following hashes one by one:

33

0000001011000011

Example

You see the following hashes one by one:

33

0110010010011100

Example

You see the following hashes one by one:

33

1000101011100001

Example

You see the following hashes one by one:

33

0110100100111101

Example

You see the following hashes one by one:

33

0011101001100010

Example

You see the following hashes one by one:

33

0110000000001110

Example

You see the following hashes one by one:

33

0011001110001111

Example

You see the following hashes one by one:

33

1111100010110000

Example

You see the following hashes one by one:

33

1111110101011100

Example

You see the following hashes one by one:

33

1100010011010011

Example

You see the following hashes one by one:

How many unique items were there?

33

1101110101001100

Example 2

You see the following hashes one by one:

34

0010001010101001

Example 2

You see the following hashes one by one:

34

0010110010111101

Example 2

You see the following hashes one by one:

34

0011101001100010

Example 2

You see the following hashes one by one:

34

0010001010101001

Example 2

You see the following hashes one by one:

34

0011101001100010

Example 2

You see the following hashes one by one:

34

0010110010111101

Example 2

You see the following hashes one by one:

34

0010110010111101

Example 2

You see the following hashes one by one:

34

0010001010101001

Example 2

You see the following hashes one by one:

34

0010110010111101

Example 2

You see the following hashes one by one:

34

0010001010101001

Example 2

You see the following hashes one by one:

34

0010110010111101

Example 2

You see the following hashes one by one:

34

0010001010101001

Example 2

You see the following hashes one by one:

34

0010110010111101

Example 2

You see the following hashes one by one:

34

0010001010101001

Example 2

You see the following hashes one by one:

How many unique items were there? Was it more or less than the

last one?

34

0010110010111101

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!

35

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!

35

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!

35

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!

35

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!

35

Which example had more unique items?

• Answer: 1st had 14 items, 2nd had 3

• Notice that only one hash in the second example ended with 0

• Extremely unlikely if there were 14 different elements!

• One of the items in the first example ended with 4 0’s

• Unlikely if there were 2 elements!

35

Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at

the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But if we’re just off by 1 or 2 zeroes, that affects our answer

by a lot!

36

Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at

the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But if we’re just off by 1 or 2 zeroes, that affects our answer

by a lot!

36

Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at

the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But if we’re just off by 1 or 2 zeroes, that affects our answer

by a lot!

36

Intuitive loglog counting

• Let’s say that the hash ending with the most 0s has k 0s at

the end

• Any given hash has k 0s with probability 1/2k

• So it seems that, there are probably something like 2k items

• But if we’re just off by 1 or 2 zeroes, that affects our answer

by a lot!

36

Improving reliability

• How do we improve the estimation of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s of items hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

37

Improving reliability

• How do we improve the estimation of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s of items hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

37

Improving reliability

• How do we improve the estimation of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s of items hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

37

Improving reliability

• How do we improve the estimation of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s of items hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

37

Improving reliability

• How do we improve the estimation of a random process?

Repeat!

• Hash each item first to one of several counters

• For each counter, keep track of 1 + the maximum number of

0s of items hashed to that counter

• For CMS, we took the min. What do we do here to combine

the estimates?

• Answer: It’s complicated. (And outside the scope of the

course.)

37

HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i], set M[i] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

38

HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i], set M[i] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

38

HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i], set M[i] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

38

HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i], set M[i] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

38

HyperLogLog Counting

• Keep an array of m counters (m is a power of 2); let’s call it

M

• Hash each item as it comes in. Then:

• Get an index i , consisting of the lowest log2 m bits of h(x).

Shift off these bits.

• Look at the remaining bits. Let z be the number of zeroes. If

z + 1 > M[i], set M[i] = z + 1

• Make sure to add 1 to your count of the number of

zeroes

38

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1

2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.

39

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1

2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.

39

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1

2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.

39

Getting an Estimate

• At the end, we have an array M, each containing a count

• Let

Z =
m−1∑
i=0

(
1

2

)M[i]

.

• Let b be a bias constant.2 For m = 32, b = .697.

• Return bm2/Z .

2You have to look this constant up.

39

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.

40

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.

40

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.

40

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.

40

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 0 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.
40

Example (with m = 8; in practice m is higher)

x1

h(x1) = 010001000111110111111101010110

index = 110 Remaining: 010001000111110111111101010

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores less than 2, so we store it.
40

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

41

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

41

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

41

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

41

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.
41

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.

42

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.

42

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.

42

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.

42

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 0 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.
42

Example (with m = 8; in practice m is higher)

x3

h(x3) = 110011011101100000011010000001

index = 001 Remaining: 110011011101100000011010000

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 4 zeroes, so we want to store 5.

The counter stores 0, so we store 5 in the slot.
42

Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.

43

Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.

43

Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.

43

Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.

43

Example (with m = 8; in practice m is higher)

x4

h(x4) = 100010011101101110110110111001

index = 001 Remaining: 100010011101101110110110111

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 0 zeroes, so we want to store 1.

The counter stores 5, so we keep the slot as-is.
43

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

44

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

44

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

44

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.

44

Example (with m = 8; in practice m is higher)

x2

h(x2) = 011110001100100001111010010110

index = 110 Remaining: 011110001100100001111010010110

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

The remaining hash ends with 1 zero, so we want to store 2. The

counter stores 2, so we keep it as-is.
44

At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the

value of b for 8. (No one does HyperLogLog with 8)

45

At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the

value of b for 8. (No one does HyperLogLog with 8)

45

At the end of the day

Have an array of counters:

0 5 0 0 0 0 2 0

000 001 010 011 100 101 110 111

• Sum up (1/2)M[j] across all j = 0 to m − 1; store in Z

• Return bm2/Z . Here m = 8. We would have to look up the

value of b for 8. (No one does HyperLogLog with 8)

45

Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)

46

Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)

46

Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)

46

Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)

46

Discussion

• How big do our counters need to be?

• Need to be long enough to count the longest string of 0s in

any hash

• Size > log log(number of distinct elements) (hence the loglog

in the name)

• 8-bit counters are good enough, so long as the number of

elements in your stream is less than the number of particles in

the universe

• Note: one thing to be careful of is hash length. But 64 bit

hashes should be good enough for any reasonable application

(and 32 bits is usually fine)

46

HLL in the Assignment

• We’ll use m = 32 counters

• Bias constant is .697

47

HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not

much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these

problems

• Other known improvements as well

48

HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not

much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these

problems

• Other known improvements as well

48

HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not

much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these

problems

• Other known improvements as well

48

HLL Beyond the Assignment

• HLL does poorly when the number of distinct items is not

much more than m

• Or is very very high

• Google developed HyperLogLog++ to help deal with these

problems

• Other known improvements as well

48

One More Cool Thing

• Facebook developed an

HLL-based algorithm to

calculate the diameter of a

graph

• Usually takes O(n2) time!

• Theirs is essentially linear,

gives extremely accurate

results

49

One More Cool Thing

• Facebook developed an

HLL-based algorithm to

calculate the diameter of a

graph

• Usually takes O(n2) time!

• Theirs is essentially linear,

gives extremely accurate

results

49

One More Cool Thing

• Facebook developed an

HLL-based algorithm to

calculate the diameter of a

graph

• Usually takes O(n2) time!

• Theirs is essentially linear,

gives extremely accurate

results

49

	Introduction
	Count-Min Sketch
	Hyper Log Log Counting

