
Applied
Algorithms
Lecture 1: Welcome, Pointers,
and C

Welcome!

• Can everyone see me and the projector?

About the class

• Goal: bridge the gap between theory and practice
• Are there theoretical models that better predict practice?

(Yes, sometimes)
• How to implement ideas efficiently in practice
• Using algorithmic knowledge to become better coders!

Pantry Algorithms

• Algorithms that you should always have handy because
they are incredibly useful

• Bloom filters, linear programming, Lloyd’s k-means

Coding

• Friendly, optionally-anonymous competition for bonus
points

• Code review occaisionally!

• Collaboration (with citation) encouraged

• Make C code run fast

• Mostly no parallelism (sorry)

About me

• Call me Sam (or something else)
• My research is in algorithms
• Data structures, randomized algorithms, similarity search
• Some practice!

• Office is TCL 209
• Office hours in 312 Unix Lab (not my office) Wednesdays 1-4
• Office hours in my office Tuesday 3-4

 0.001

 0.01

 0.1

 0 10 20 30 40 50 60 70 80 90 100

Fa
ls

e
Po

si
tiv

e
ra

te

A/S ratio

Chicago A, f=8

Cuckoo Filter
Cuckooing ACF
Swapping ACF

Cyclic ACF s=1
Cyclic ACF s=2
Cyclic ACF s=3

History of the course

• I taught a few times before
• But not here!
• Potential minor scheduling adjustments
• Stay in touch if there are problems!

• No TAs – ask me questions and collaborate with each other

About the course

• Hopefully: half theory, half coding
• In terms of time and in terms of grading
• Probably more focus on ”theory” in lectures

Theory

• Algorithms is (technically) a prerequisite
• If you haven’t taken 256, might need some catchup

• We’re doing dynamic programming week 2
• Second section of course (in March) is probability

• Slightly different focus:
• Design
• New models/considerations
• Think 136 more than 256

Coding

• We’ll be coding in C
• Weekly assignments
• First assignment is intended to give you a chance to catch

up
• Office hours!
• Grading should not be too strict, collaboration is

encouraged

Why C?

• Familiarity!
• Seen C/Looks like Java

• Low-level
• See impact of course concepts

• Fast!

• Useful to know!

Course website

• Can access from CS webpage, or my site
• Hopefully from Google soon

• Are you registered?
• Please email me if not!

• Go through site and syllabus

Crash course in C

• Intro/refresher

• Readings and practice available on website

• First assignment is in pairs, intended to give a chance to
catch up on C (as well as learn a new algorithmic
concept)

• If you are experienced in C, let others answer questions

About C

• Lifetime of information to learn
• I am not an expert (even though I’ve used it a lot)
• Many features, many interesting effects behind the scenes

Simple program

• Hello world
• Preprocessor/include
• Print sum of two variables
• Loop
• If, modulo

• Compile

Arrays

• Arrays work largely like Java
• We’ll talk about “new” equivalent in a second

• No bounds checking!!! (also, no boolean)
• sizeof for fixed-size array (C replaces at compile time; easier

to read)

Structs

• No classes, structs instead
• No member functions
• Sequence of variables stored contiguously in memory
• Use . operator to access member variables

• Semicolon after declaration
• Use “struct” to refer to your structs
• OR use typedef

Pointers

• Manually get the address of variables
• Addresses can be stored, printed, manipulated
• int* stores a pointer to an int; char* stores a pointer to a char
• & operator gets address
• * operator returns value at address
• Changes between executions
• Arrays

Careful coding

• Good coding practice is much much much more important
than ever

• Include asserts to check array ranges
• Code, test, code, test
• Split into functions and test separately!
• Check your pointers!
• Corner cases! (Is this pointer null? Is this value 0?)
• Speed is not your first priority, correctness is

Pointers, functions, and structs

• Creating function
• Passing is always by value. Can pass struct instances
• How do we change a variable inside a function?
• Pass the address—the address doesn’t change, but the value does!

• -> operator
• Structs stored contiguously in memory

Allocation

• “new” in Java and C++ allocates space for a new instance of
a variable
• C uses “malloc”
• Very much user-controlled: you set the space, no garbage

collection

Where are things
stored?

• First place: in CPU register, never in memory
• Temporary variables like loop indices
• Compiler decides this

• Second place: call stack
• Small amount of dedicated memory to keep track

of current function and local variables
• Pop back to last function when done
• Temporary!

The heap

• Very large amount of memory (basically all of RAM)
• Using new in Java or C++ puts variable on the heap
• We use malloc
• Does not zero out memory. calloc does
• C will not make you instantiate your variables

• Needs stdlib.h
• Returns pointer; don’t need to cast to pointer type

Ways to store things

• Speed: registers > stack > heap
• Size: heap > stack > registers
• Longevity: heap > stack > registers

• Java rules work out well: store ”objects” and arrays on heap,
just declare small “primitive types” and let the compiler
work it out

Allocation, pointers, and arrays

• What is an array?
• Can we use arrays without using array-like things?
• Using pointers and malloc instead?

• Does this allow us to allocate arrays dynamically?

• Pointers and arrays are (mostly) equivalent in C

Memory leaks

• C does not have a garbage collector
• Fast, efficient, you actually really want to be able to control this
• But, obviously, huge pain and difficult to debug

• free() releases memory
• Can be used for another variable
• Not zeroed out

• Every malloc() should have a free()!
• After your program ends all memory is released

Segmentation faults

• Access “illegal” memory
• Address that the OS didn’t give your program

• Given very very little information
• Debug using gdb (checkpoints, etc.)
• valgrind is useful for checking memory
• We’ll see some examples of these next week

Compiling and building

• Compile: convert code into machine-executable code
• gcc –c [file name]

• Link: stitch together function calls between files
• Build: whole process
• What gcc actually does when given file
• Need to list compiled object files

What happens when we change one file?

• Need to recompile that file
• Need to build final output file

• Can we do this automatically?

Makefile

• Lists dependencies
• Lists what you actually want to build
• Entire command: make
• If a file changes, compiles only what’s necessary

• Very very useful!

In this class

• I will give you makefile
• Don’t need to change unless you use multiple files
• You can, but probably won’t ever need to
• Projects in this class are fairly small and self-contained

