
CS358: Applied Algorithms

Assignment 2: Space-Efficient Edit Distance (due 3/4/2020 )

Instructor: Sam McCauley

Instructions

All submissions are to be done through github. This process is detailed in the handout
“Handing In Assignments” on the course website. Answers to the questions below should
be submitted by editing this document. All places where you are expected to fill in solution
are marked in comments with “FILL IN.”

Please contact me at sam@cs.williams.edu if you have any questions or find any problems
with the assignment materials.

Unlike Assignment 1, this assignment should be done alone. You are encouraged to
collaborate to the extent described in the class materials, but each student should ultimately
have their own submission.

Problem Description

Input: The input consists of a sequence of tests. Each test begins with a line that has
four numbers on it. These numbers are the length of string1, the length of string2, the
length of the intended solution string, and finally the size of the alphabet. Following this
line, string1 is listed in 80-character lines, followed by string2 and finally the intended
solution. These strings each have brief comments to help with navigation that are ignored
by the input reader provided to you.

Output: The output is a string describing a sequence of edits. Each character in the string
should be ‘i’, ‘r’, ‘d’, or ‘m’. The string should be null-terminated.

Goal: The output is a string describing how string2 can be modified to obtain string1.
The output is a string of characters, where each character is ‘i’, ‘r’, ‘d’, or ‘m’, repre-
senting an insert, replacement, delete, or match, respectively.

Thus, if string2 is ac, and string1 is a, the optimal output string is md.
Please pay attention to ties. Your algorithm should favor going as far right in the

dynamic programming table as possible, if string1 is represented vertically and string2 is
represented horizontally.

• This means that when implementing the recursive algorithm, if there are multiple splits
that have the same cost, you should take the rightmost option.

• Equivalently, if you are implementing a non-recursive algorithm, if there is a tie while
backtracking you should use an insert whenever possible, then a match or replace, and
finally a delete.

1

sam@cs.williams.edu


Assignment 2: Space-Efficient Edit Distance 2

• If your algorithm breaks ties correctly, if string1 is aaa and string2 is aa, it should
output mmi (not mim or imm).

You must have an implementation of Hirshberg’s algorithm to receive full
credit. That is to say, you should have an implementation that takes O(n + m) space.
Implementations of the space-inefficient edit distance start with 80% credit. You are not
required to use Hirshberg’s to receive credit on the leaderboard; if you do not use Hirshberg’s
as your main algorithm, please clearly label your Hirshberg’s implementation for grading.

Testing Parameters

The main() method of the testing program (in test.c) takes two arguments, each of which
is a file containing edit distance instances. You can test your program by first running make,
and then running ./test.out testData.txt timeData.txt.

• All instances on this assignment will have an alphabet of size 4 or 256; in either case
the input will be taken as a normal array of chars. You may optimize your solution
under this assumption (it’s OK if your algorithm fails with an alphabet of size, say,
26).

• There are several testing and timing instances provided. Your performance will be
judged based on the total time across three instances. The three testing instances will
look very similar to those provided in timeData.txt.

• All 4-character instances have string1 as an actual subsequence of human DNA, and
string2 as a perturbed version of this DNA. All 256-character instances have string1
consist of English text (including punctuation), and string2 as a perturbed version
of this text.

• Tiebreaking is unfortunately necessary and unavoidable even in the large instances.

• Two solutions with running times within .1 seconds of each other will be considered
tied for the purposes of this assignment.

Questions

Problem 1. Please describe your implementation at a high level. What techniques and
data structures did you use? What optimizations did you use? Please give an analysis
of the space usage of your implementation.

Solution.



Assignment 2: Space-Efficient Edit Distance 3

External Memory

Problem 2. How many I/Os does it take to find the edit distance (not necessarily the
sequence of edits) using the standard O(nm) time algorithm? Please explain your answer.

Solution.

Problem 3. (Extra credit: 15pts) Give an algorithm that can find the edit distance
(not necessarily the sequence of edits) in O(nm/MB + (n + m)/B) I/Os. Prove that your
algorithm meets this bound. Can this be used to improve the I/O complexity of Hirshberg’s
algorithm? If so, prove it; if not, explain why not.

Solution.

Shelving Books with Labels

Let’s say you work in a library. You have to put m books (let’s call them b1, . . . , bm) on
n ≤ m shelves (which we’ll call s1, . . . sn). The books are numbered using the Dewey Decimal
system, and must be placed in order starting on shelf s1. Furthermore, there may not be
an empty shelf between two shelves that contain books.1 For example, if book 10
goes on shelf 2, book 11 must go on shelf 2 or shelf 3. Each shelf can hold any number of
books; even all m books may be placed on a single shelf.

This would normally be fairly easy—for example, you could just put all books on the first
shelf. Unfortunately, this library also keeps track of k topics to help people browse for books
they may be interested in. Each shelf sj has a label `j representing the topics of books on
that shelf. Similarly, each book bi has a list of topics ti representing what topics are covered
in that book.

You were instructed to reprint all the labels on the shelves so that the shelves indicate
the topics of their books: if book bi is on shelf sj, then each topic in ti can be found in `j.
However, in an effort to stay green you want to keep the labels as-is, and place the books so
that they match the current labels as closely as possible (while still retaining Dewey Decimal
order).

Let’s say that the cost of placing book bi on shelf sj is the number of topics ti that do not
appear in the list `j. This leads to an algorithmic problem: how can the books be assigned
to shelves to minimize the total cost; i.e. the number of missing topics over all books on all
shelves?

Problem 4. Give an algorithm to find the assignment of books to shelves that minimizes
the number of mismatches. Your algorithm should run in O(nmk) time and O(nm) space.

Solution.

Problem 5. Give an algorithm to find the minimum number of mismatches in O(nmk) time
and O(m) space (you do not need to find the optimal assignment of books to shelves).

1Your boss at the library is a stickler for aesthetics.



Assignment 2: Space-Efficient Edit Distance 4

Solution.

Problem 6. Finally, give an algorithm to find the assignment of books to shelves that
minimizes the number of mismatches in O(nmk) time and O(m) space.

Solution.

Tips and tricks

• Remember to create a correct program before worrying about creating a fast one! Even
more importantly: create a correct program before creating one that cleverly reuses
unnecessary space. Even your first Hirshberg’s implementation should probably be
fairly wasteful!

• I would fairly strongly suggest that you create a working version of the simple (not
space-efficient) edit distance algorithm to help you with debugging.

• Keep an eye on memory management! If you are not careful you may wind up with
Θ(nm) memory usage even with a recursive algorithm.

• As I mentioned in class, a correct implementation of Hirshberg’s algorithm almost
certainly has disjoint (nonoverlapping) subproblems.

• In class we discussed that maintaining the solution using Hirshberg’s algorithm can be
a bit tricky. I believe that the easiest way is to do it “bottom-up:” construct a solution
in the base case, and pass it to the calling function. The calling function can then
allocate space for a solution that combines its two recursive calls, and (again) pass it
up to its calling function; and so on.

• As a reminder, valgrind is an excellent tool if you are having trouble keeping track of
memory. It is very easy to use, and it is available on the lab computers.

• While it is likely possible to implement an O(min{m,n}) space algorithm, it is probably
better to implement an O(n + m) space algorithm and then work on other avenues of
improving efficiency.


