Lecture 9: Bloom Filters and Cuckoo Filters

Sam McCauley

October 7, 2025

Williams College

Admin

- Did everyone have a good mountain day?
- Assignment 3 out today, due next Thursday
- Cuckoo filters today; streaming Thursday
- Best plan (in my opinon)
 - Finish cuckoo filter coding part of assignment on Thursday in lab
 - Should be very doable if you read through the lab and starter code beforehand
 - · Finish rest next Thursday
- No TA hours during reading period
- Assignment 4 next week based on lecture Thursday
- Midterm on Friday after Assignment 4; review the Tuesday before

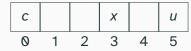
Cuckoo Hashing Wrapup

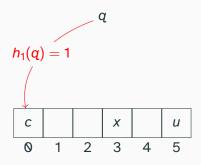
Cuckoo Hashing [Pagh, Rodler 2005]

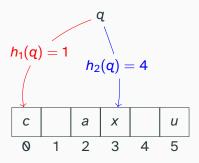
- A third method of resolving collisions
- Queries are O(1) worst case
- Insert will still be O(1) in expectation
- Comparison to linear probing and chaining?
 - Chaining: O(1) worst case inserts; O(1) expected queries. Not as good for query-heavy workloads!
 - Linear probing: more cache-efficient, but both inserts and queries are only O(1) on average

С			X		и
0	1	2	3	4	5

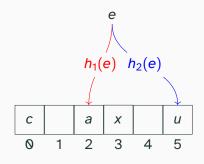
q





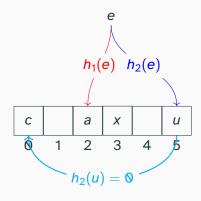


Cuckoo Hashing Inserts



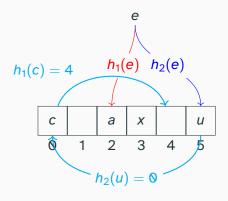
- Let's say we want to insert a new item a. How can we do that?
- Easy case: if $h_1(a)$ or $h_2(a)$ is free, can just store a immediately.
- What do we do if both are full?
- Move one of the items in the way to its other slot!
- If there's an item THERE, recurse

Cuckoo Hashing Inserts



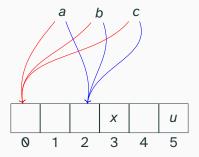
- Let's say we want to insert a new item a. How can we do that?
- Easy case: if $h_1(a)$ or $h_2(a)$ is free, can just store a immediately.
- What do we do if both are full?
- Move one of the items in the way to its other slot!
- If there's an item THERE, recurse

Cuckoo Hashing Inserts



- Let's say we want to insert a new item a. How can we do that?
- Easy case: if $h_1(a)$ or $h_2(a)$ is free, can just store a immediately.
- What do we do if both are full?
- Move one of the items in the way to its other slot!
- If there's an item THERE, recurse

- Recall our invariant: every item x is stored at $h_1(x)$ or $h_2(x)$
- Is there a simple example where this is impossible?
- One potential problem: three items x, y, and z all have the same two hashes.
 Can't maintain the invariant!
- If this occurs, our insert algorithm (so far) loops infinitely

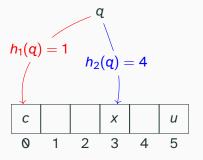


- Recall our invariant: every item x is stored at $h_1(x)$ or $h_2(x)$
- Is there a simple example where this is impossible?
- One option: three items x, y, and z all have the same two hashes
- From last time: What is the probability that this exact scenario happens if we store *n* items in 2*n* slots? Let's do this on the board.

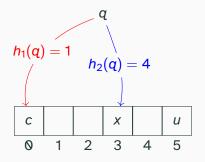
- Recall our invariant: every item x is stored at $h_1(x)$ or $h_2(x)$
- Is there a simple example where this is impossible?
- One option: three items x, y, and z all have the same two hashes
- From last time: What is the probability that this exact scenario happens if we store *n* items in 2*n* slots? Let's do this on the board.
 - There exist slots s_1 and s_2 such that all of x, y, and z all hash to one of these two slots
 - For a given x, y, z, s_1 , and s_2 , how often does $h_1(x) = h_1(y) = h_1(z) = s_1$ and $h_2(x) = h_2(y) = h_2(z) = s_2$?
 - $(1/2n)^6$
 - There are $\binom{n}{3}\binom{2n}{2}$ choices of x, y, z, s_1 , and s_2
 - So this happens with probability $\Theta(n^3n^2/n^6) = \Theta(1/n)$.

- Recall our invariant: every item x is stored at $h_1(x)$ or $h_2(x)$
- Is there a simple example where this is impossible?
- One option: three items x, y, and z all have the same two hashes
- This occurs with probability O(1/n)
- With more work: probability of an insert looping infinitely is O(1/n) (proof is outside the scope of the course)

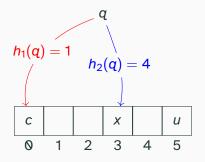
- Recall our invariant: every item x is stored at $h_1(x)$ or $h_2(x)$
- Is there a simple example where this is impossible?
- One option: three items x, y, and z all have the same two hashes
- This occurs with probability O(1/n)
- With more work: probability of an insert looping infinitely is O(1/n) (proof is outside the scope of the course)
- Inserts loop very rarely if *n* is large (you probably will not see this happen on Assignment 3). Usually put in a maximum number of iterations, after which the insert fails, to prevent looping infinitely



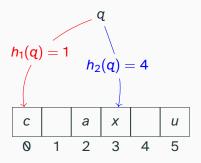
• Queries: O(1) worst case operations



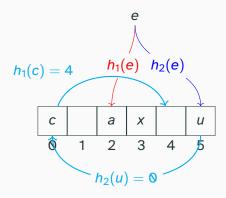
- Queries: O(1) worst case operations
- Query cache performance?

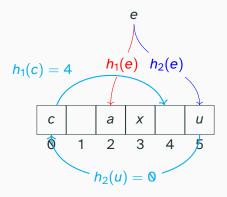


- Queries: O(1) worst case operations
- Query cache performance?
 - Two cache misses per query. Is that good?

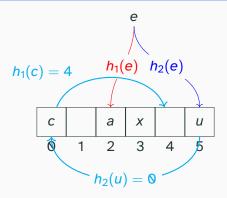


- Queries: O(1) worst case operations
- Query cache performance?
 - Two cache misses per query. Is that good?
 - Kind of! Probably better than chaining. But linear probing has only \approx one cache miss on any query, so long as $\log n$ items fit in a cache line

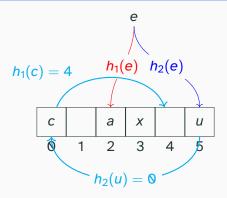




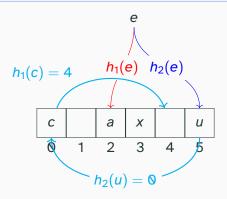
 What is the Insert performance including all cuckoos (computationally)? How many cuckoos do we do?



- What is the Insert performance including all cuckoos (computationally)? How many cuckoos do we do?
 - Result: O(1) cuckoos in expectation, so inserts are O(1)



- What is the Insert performance including all cuckoos (computationally)? How many cuckoos do we do?
 - Result: O(1) cuckoos in expectation, so inserts are O(1)
 - Idea: half the slots are empty, so each time we go to a new slot, we should have a $\approx 1/2$ probability of being done



- What is the Insert performance including all cuckoos (computationally)? How many cuckoos do we do?
 - Result: O(1) cuckoos in expectation, so inserts are O(1)
 - Idea: half the slots are empty, so each time we go to a new slot, we should have a $\approx 1/2$ probability of being done
 - True analysis is nontrivial since these events are not independent

• Queries: O(1) worst case

• Queries: O(1) worst case

- Queries: O(1) worst case
- Insert cache performance?
 - One cache miss per "cuckoo", so O(1) insert overall—OK but not great

- Queries: O(1) worst case
- Insert cache performance?
 - One cache miss per "cuckoo", so O(1) insert overall—OK but not great
 - In practice, inserts are a downside for cuckoo hashing due to poor constants

- Queries: O(1) worst case
- Insert cache performance?
 - One cache miss per "cuckoo", so O(1) insert overall—OK but not great
 - In practice, inserts are a downside for cuckoo hashing due to poor constants
- Idea: cuckoo hashing does great on queries (though with potentially worse cache efficiency than linear probing), but pays for it with relatively expensive inserts

Filters: Goals for Today

What we want

Text Caption

• Worst-case compression

What we want

Text Caption

• Worst-case compression

• Lossy compression with algorithmic guarantees

What we want

Text Caption

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we're losing and what we're not

Filter

• Stores a set S of size *n* (basically: think of it as a (lossy) compressed dictionary)

Filter

- Stores a set S of size n (basically: think of it as a (lossy) compressed dictionary)
- Answers queries q of the form: "is $q \in S$?"
 - Really just a very simple dictionary that only returns whether or not a key exists (no values)

Filter

- Stores a set S of size n (basically: think of it as a (lossy) compressed dictionary)
- Answers queries q of the form: "is $q \in S$?"
 - Really just a very simple dictionary that only returns whether or not a key exists (no values)
- All elements $x \in S$ and all queries must be from some universe U

Filter

- Stores a set S of size *n* (basically: think of it as a (lossy) compressed dictionary)
- Answers queries q of the form: "is $q \in S$?"
 - Really just a very simple dictionary that only returns whether or not a key exists (no values)
- All elements $x \in S$ and all queries must be from some universe U
- (Only need *U* to make sure that we can hash everything.)

Filter Guarantees

Guarantee (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

A filter *always* reports that every key in your dictionary exists. But it may (falsely) report that others exist as well

Guarantee 1 Sanity check

• Can you create a *very* simple data structure that has no false negatives?

Guarantee 1 Sanity check

- Can you create a *very* simple data structure that has no false negatives?
- Easiest option: my data structure stores nothing. On every query q, my data structure responds " $q \in S$."

Guarantee 1 Sanity check

- Can you create a very simple data structure that has no false negatives?
- Easiest option: my data structure stores nothing. On every query q, my data structure responds " $q \in S$."
- Another easy option: I store the entire set S using a standard dictionary (perhaps using a hash table). On a query q, I look it up and give the correct answer.

Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

We want our filter to have a false positive rate ε < 1.

¹The cuckoo filter will actually need $1+1/\varepsilon$ to be a power of 2.

Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

We want our filter to have a false positive rate ε < 1.

The filters we will talk about today will work for *any* false positive rate ε , so long as $1/\varepsilon$ is a power of 2.¹

So we can, if we want, guarantee a false positive rate of 1/2, or 1/1024—whatever is best for your use case.

¹The cuckoo filter will actually need $1 + 1/\varepsilon$ to be a power of 2.

Guarantee 2 Sanity check

• Can you create a very simple data structure that has a good false positive rate?

Guarantee 2 Sanity check

 Can you create a very simple data structure that has a good false positive rate?

• I store the entire set S using a standard dictionary (perhaps using a hash table). On a query q, I look it up and give the correct answer. This satisfies Guarantee 2 with $\varepsilon = 0$.

Let's say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = ``fox''?

- What happens when I query for the word x = ``fox''?
 - The filter always returns yes, $x \in S$

- What happens when I query for the word x = "fox"?
 - The filter always returns yes, $x \in S$
- What happens when I query for the (non) word "fhqwhgads"?

- What happens when I query for the word x = "fox"?
 - The filter always returns yes, $x \in S$
- What happens when I query for the (non) word "fhqwhgads"?
 - With probability ε , the filter returns yes, $x \in S$

- What happens when I query for the word x = "fox"?
 - The filter always returns yes, $x \in S$
- What happens when I query for the (non) word "fhqwhgads"?
 - With probability ε , the filter returns yes, $x \in S$
 - With probability 1ε , the filter returns no, $x \notin S$

ullet Obviously, smaller arepsilon is better-it means we make fewer mistakes.

- ullet Obviously, smaller arepsilon is better-it means we make fewer mistakes.
- So what's the tradeoff?

- ullet Obviously, smaller arepsilon is better-it means we make fewer mistakes.
- So what's the tradeoff?
- \bullet We tradeoff space versus accuracy using $\varepsilon.$

- ullet Obviously, smaller arepsilon is better-it means we make fewer mistakes.
- So what's the tradeoff?
- We tradeoff space versus accuracy using ε .
 - Smaller ε means the compression is not as lossy

- Obviously, smaller ε is better-it means we make fewer mistakes.
- So what's the tradeoff?
- We tradeoff space versus accuracy using ε .
 - Smaller ε means the compression is not as lossy
 - We make fewer mistakes, but we need more space

- Obviously, smaller ε is better-it means we make fewer mistakes.
- So what's the tradeoff?
- We tradeoff space versus accuracy using ε .
 - Smaller ε means the compression is not as lossy
 - We make fewer mistakes, but we need more space
 - Larger ε means more aggressive compression

- Obviously, smaller ε is better-it means we make fewer mistakes.
- So what's the tradeoff?
- We tradeoff space versus accuracy using ε .
 - Smaller ε means the compression is not as lossy
 - We make fewer mistakes, but we need more space
 - Larger ε means more aggressive compression
 - Space is very small, but filter is very inaccurate!

- ullet Obviously, smaller arepsilon is better-it means we make fewer mistakes.
- So what's the tradeoff?
- We tradeoff space versus accuracy using ε .
 - Smaller ε means the compression is not as lossy
 - We make fewer mistakes, but we need more space
 - Larger ε means more aggressive compression
 - Space is very small, but filter is very inaccurate!
- A filter generally requires $O(n \log 1/\epsilon)$ bits of space.

We talk about two filters today:

We talk about two filters today:

• A Bloom filter requires $1.44n \log_2(1/\epsilon)$ bits of space.

We talk about two filters today:

- A Bloom filter requires $1.44n \log_2(1/\epsilon)$ bits of space.
- The cuckoo filter uses $1.05n \log_2(1+1/\varepsilon) + 3.15n$ bits of space.

We talk about two filters today:

- A Bloom filter requires $1.44n \log_2(1/\epsilon)$ bits of space.
- The cuckoo filter uses $1.05n \log_2(1+1/\varepsilon) + 3.15n$ bits of space.

How can we interpret this?

We talk about two filters today:

- A Bloom filter requires $1.44n \log_2(1/\epsilon)$ bits of space.
- The cuckoo filter uses $1.05n \log_2(1+1/\varepsilon) + 3.15n$ bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with $\varepsilon = 1/63$, the filter takes less than 1 byte of space per element being stored.

We talk about two filters today:

- A Bloom filter requires $1.44n \log_2(1/\epsilon)$ bits of space.
- The cuckoo filter uses $1.05n \log_2(1+1/\varepsilon) + 3.15n$ bits of space.

How can we interpret this?

- Plugging in numbers: if we have a cuckoo filter with $\varepsilon = 1/63$, the filter takes less than 1 byte of space per element being stored.
- Notice that this space does not depend on the size of the original elements.
 We can store very long strings and still require only one byte per string stored.

History and Discussion

Bloom filter

• Invented by Burton H. Bloom in 1970

Bloom filter

- Invented by Burton H. Bloom in 1970
- Original publication only talked about good practical performance; theoretical analysis came later.

Cuckoo filter

• Invented by Fan et al. in 2014

Cuckoo filter

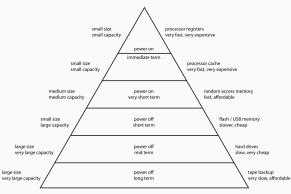
- Invented by Fan et al. in 2014
- Provides better space usage for small ε (i.e. when the compression is not too lossy)

Cuckoo filter

- Invented by Fan et al. in 2014
- Provides better space usage for small ε (i.e. when the compression is not too lossy)
- Requires fewer hashes; has better cache performance.

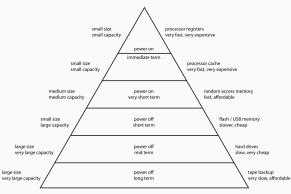
When should you use a filter?

Computer Memory Hierarchy



1st example: avoiding cache misses

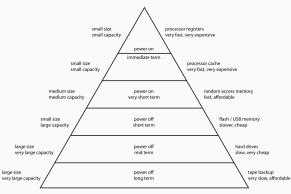
Computer Memory Hierarchy



1st example: avoiding cache misses

 Let's say we have a very large table of data

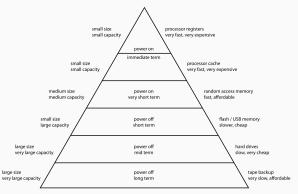
Computer Memory Hierarchy



1st example: avoiding cache misses

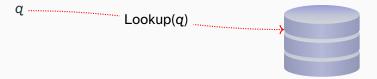
- Let's say we have a very large table of data
- Large enough that it doesn't fit in L3
 - Maybe it doesn't even fit in RAM

Computer Memory Hierarchy



1st example: avoiding cache misses

- Let's say we have a very large table of data
- Large enough that it doesn't fit in L3
 - Maybe it doesn't even fit in RAM
- Frequently query items not in the table



Queries to the entire dataset are very expensive!

Many workloads involve mostly "negative" queries: queries to keys not stored in the table. (query $q \notin S$)

• Classic example: dictionary of unusually-hyphenated words for a spellchecker.

Many workloads involve mostly "negative" queries: queries to keys not stored in the table. (query $q \notin S$)

- Classic example: dictionary of unusually-hyphenated words for a spellchecker.
- Checking if key already exists before an insert (deduplication in general)

Many workloads involve mostly "negative" queries: queries to keys not stored in the table. (query $q \notin S$)

- Classic example: dictionary of unusually-hyphenated words for a spellchecker.
- Checking if key already exists before an insert (deduplication in general)
- · Check for malicious URLs

Many workloads involve mostly "negative" queries: queries to keys not stored in the table. (query $q \notin S$)

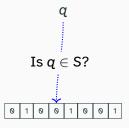
- Classic example: dictionary of unusually-hyphenated words for a spellchecker.
- Checking if key already exists before an insert (deduplication in general)
- Check for malicious URLs
- Table with many empty entries

Classic filter usage: succinct data structure that will allow us to "filter out" negative queries.

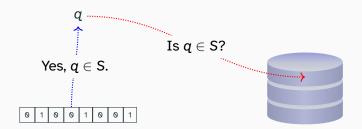
Filters can be used to "filter out" negative membership queries, improving performance.

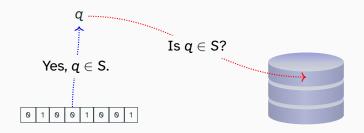
Filters are so small that they can fit in local memory.

q



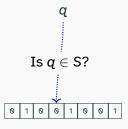
Fast in-memory query.

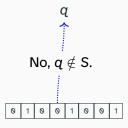




If filter reports $q \in S$, access the table.

If $q \notin S$ (false positive), still do an unnecessary access.





Always correct! Don't need to access table.

• With $O(n \log 1/\varepsilon)$ local memory (perhaps fitting in L3 cache), can filter out $1-\varepsilon$ cache misses for keys $q \notin S$.

• With $O(n \log 1/\varepsilon)$ local memory (perhaps fitting in L3 cache), can filter out $1 - \varepsilon$ cache misses for keys $q \notin S$.

Greatly reduces number of remote accesses, thereby reducing time.

2nd example: Approximately storing a set

 Before, we stored the actual set S. (It was expensive to access, but we stored it.)

2nd example: Approximately storing a set

 Before, we stored the actual set S. (It was expensive to access, but we stored it.)

• But what if we don't want to?

2nd example: Approximately storing a set

 Before, we stored the actual set S. (It was expensive to access, but we stored it.)

But what if we don't want to?

Example: approximate spell checker

• Want to build a spell checker; don't have room to store dictionary

- Want to build a spell checker; don't have room to store dictionary
- Store the words in a filter. What do our guarantees mean?

- Want to build a spell checker; don't have room to store dictionary
- Store the words in a filter. What do our guarantees mean?
- Guarantee 1: if we query a correctly-spelled word, it is never marked as misspelled

- Want to build a spell checker; don't have room to store dictionary
- Store the words in a filter. What do our guarantees mean?
- Guarantee 1: if we query a correctly-spelled word, it is never marked as misspelled
- \bullet Guarantee 2: if we query a misspelled word, we only miss it (don't mark it misspelled) with probability ε

- Want to build a spell checker; don't have room to store dictionary
- Store the words in a filter. What do our guarantees mean?
- Guarantee 1: if we query a correctly-spelled word, it is never marked as misspelled
- \bullet Guarantee 2: if we query a misspelled word, we only miss it (don't mark it misspelled) with probability ε
- Using only a byte or so per item, can do almost as well as storing a full dictionary! (Roughly 98% accuracy.)

A Bloom filter consists of:

• $k = \log_2 1/\varepsilon$ hash functions, which I will denote using h_1, h_2, \dots, h_k ,

- $k = \log_2 1/\varepsilon$ hash functions, which I will denote using h_1, h_2, \dots, h_k ,
- Bit array A of $m = nk \log_2 e \approx 1.44n \log_2 \frac{1}{\epsilon}$ bits.

- $k = \log_2 1/\varepsilon$ hash functions, which I will denote using h_1, h_2, \dots, h_k ,
- Bit array A of $m = nk \log_2 e \approx 1.44n \log_2 \frac{1}{\epsilon}$ bits.
 - Since we're doing compression, we measure space in bits, and track constants

- $k = \log_2 1/\varepsilon$ hash functions, which I will denote using h_1, h_2, \dots, h_k ,
- Bit array A of $m = nk \log_2 e \approx 1.44n \log_2 \frac{1}{\epsilon}$ bits.
 - Since we're doing compression, we measure space in bits, and track constants
- For each i = 1, ..., k, $h_i : U \to \{0, ..., m-1\}$ (that is to say, h_i maps an element from the universe of possible elements U to a slot in the hash table).

- $k = \log_2 1/\varepsilon$ hash functions, which I will denote using h_1, h_2, \dots, h_k ,
- Bit array A of $m = nk \log_2 e \approx 1.44n \log_2 \frac{1}{\epsilon}$ bits.
 - Since we're doing compression, we measure space in bits, and track constants
- For each i = 1, ..., k, $h_i : U \to \{0, ..., m-1\}$ (that is to say, h_i maps an element from the universe of possible elements U to a slot in the hash table).
- Assume $1/\varepsilon$ is a power of 2; round m up to the nearest integer

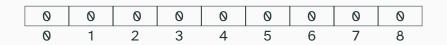
Building a Bloom Filter

• Begin with A[i] = 0 for all i. (Basically, just calloc the bit array.)

• Then add the items one at a time by setting all their slots to 1:

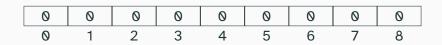
```
1 for each x in S:
2 for i = 1 to k:
3 A[h_i(x)] = 1
```

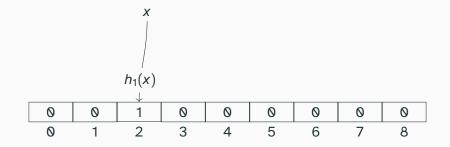
Building a Bloom Filter

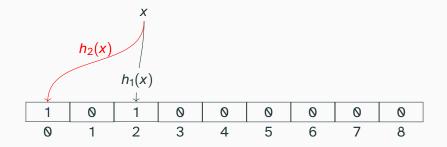


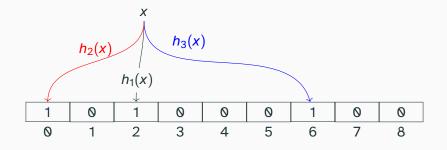
Inserting two elements x and y into a Bloom filter with $\varepsilon = 1/8$. We have three hash functions, and (rounding up) the array is of length m = 9 bits.

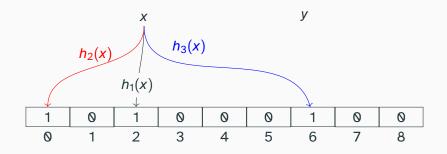
Χ

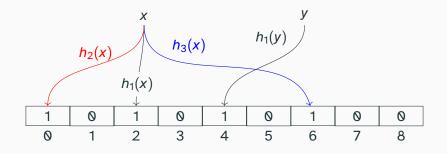


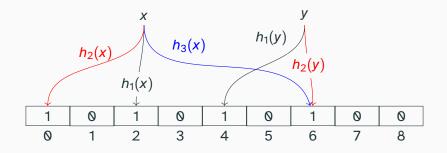


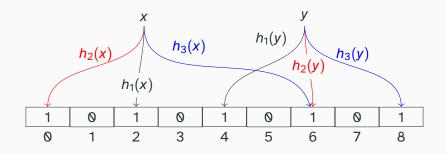












Invariant

• What invariant does this data structure satisfy?

Invariant

What invariant does this data structure satisfy?

Invariant

A Bloom filter storing a set S using hashes $h_1, ..., h_k$ satisfies $A[h_i(x)] = 1$ for all $x \in S$ and all $i \in \{1, ..., k\}$.

Querying a Bloom filter

On a query q, we check all the hash slots to see if any stores 0:

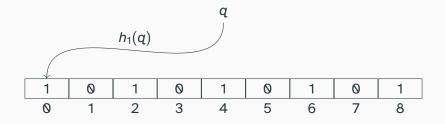
```
for i = 1 to k:
    if A[h_i(q)] == 0:
        return false //q is not in S

// we have A[h_i(q)] = 1 for all h_i
return true //q is in S
```

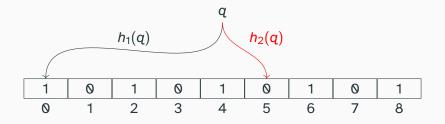
q

1	0	1	0	1	0	1	0	1
0	1	2	3	4	5	6	7	8

An example query to an element not in the set; k = 3.



An example query to an element not in the set; k = 3.

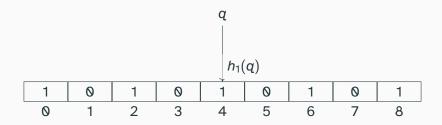


An example query to an element not in the set; k = 3.

q

1	0	1	0	1	0	1	0	1
0	1	2	3	4	5	6	7	8

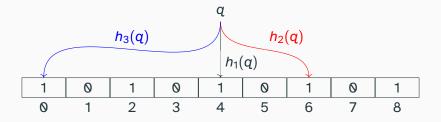
An example false positive query.



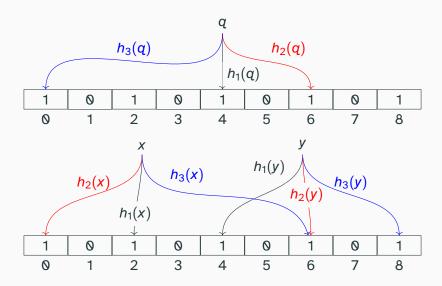
An example false positive query.



An example false positive query.



An example false positive query.



filter?

Is it possible to delete an item?

In pairs: is it possible to insert a new item into a Bloom

• Can we insert into a Bloom filter?

- Can we insert into a Bloom filter?
 - Yes, but performance degrades as it fills up. We are OK so long as no more than n items are inserted.

- Can we insert into a Bloom filter?
 - Yes, but performance degrades as it fills up. We are OK so long as no more than n items are inserted.

• Can we delete?

- Can we insert into a Bloom filter?
 - Yes, but performance degrades as it fills up. We are OK so long as no more than n items are inserted.

- Can we delete?
 - No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee
 1.

Bloom filter analysis

• Assume our hashes h_i are perfectly uniform random: any $x \in U$ is mapped to any hash slot $s \in \{0, ..., m-1\}$ with probability 1/m; independently of any other hash.

• Let's strategize: what about the Bloom filter can we use to prove that Guarantee 1 and Guarantee 2 hold?

Guarantee 1

Guarantee (No False Negatives)

If we query an item $q \in S$, then a filter will always answer $q \in S$.

Guarantee 1

Guarantee (No False Negatives)

If we query an item $q \in S$, then a filter will always answer $q \in S$.

• By the Bloom filter Invariant, if $q \in S$, then $A[h_i(q)] = 1$ for all $i \in \{1, ..., k\}$.

• This means that the query algorithm always returns " $q \in S$."

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- Assume: each entry of A is 1 with probability 1/2
- Only get a false positive if every bit is a 1

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- Assume: each entry of A is 1 with probability 1/2
- Only get a false positive if every bit is a 1
- Are these events independent?

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- Assume: each entry of A is 1 with probability 1/2
- Only get a false positive if every bit is a 1
- Are these events independent?
 - No! But it seems like the independence isn't too big of a deal...let's assume they're independent for now.

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- Assume: each entry of A is 1 with probability 1/2
- Only get a false positive if every bit is a 1
- Are these events independent?
 - No! But it seems like the independence isn't too big of a deal...let's assume they're independent for now.
- Occurs with probability $(1/2)^k = (1/2)^{\log_2(1/\varepsilon)}$

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

- Assume: each entry of A is 1 with probability 1/2
- Only get a false positive if every bit is a 1
- Are these events independent?
 - No! But it seems like the independence isn't too big of a deal...let's assume they're independent for now.
- Occurs with probability $(1/2)^k = (1/2)^{\log_2(1/\varepsilon)}$
- $(1/2)^{\log_2(1/\varepsilon)} = \varepsilon$.

Cuckoo Filter

Assignment 3

• In short: you'll implement a cuckoo filter to speed up a sequence of dictionary queries

Assignment 3

- In short: you'll implement a cuckoo filter to speed up a sequence of dictionary queries
- You're looking for "bilingual palindromes": strings whose reverse is a word in another language

Assignment 3

- In short: you'll implement a cuckoo filter to speed up a sequence of dictionary queries
- You're looking for "bilingual palindromes": strings whose reverse is a word in another language
- Most words are not bilingual palindromes, so a filter can significantly speed up queries

- k hash functions denoted by h_1, h_2, \dots, h_k (k is a constant)
 - We'll eventually only use *one* of these hash functions (h_1) in our implementation!

- k hash functions denoted by h_1, h_2, \dots, h_k (k is a constant)
 - We'll eventually only use one of these hash functions (h_1) in our implementation!
- a fingerprint hash function f that takes an item from the universe and outputs a number from 1 to $1/\varepsilon$ (we'll call this number the *fingerprint* of the item)

- k hash functions denoted by h_1, h_2, \dots, h_k (k is a constant)
 - We'll eventually only use one of these hash functions (h_1) in our implementation!
- a fingerprint hash function f that takes an item from the universe and outputs a number from 1 to $1/\varepsilon$ (we'll call this number the *fingerprint* of the item)
- a cuckooing hash function h that takes in a fingerprint and outputs a number from 0 to m − 1, and

- k hash functions denoted by h_1, h_2, \dots, h_k (k is a constant)
 - We'll eventually only use *one* of these hash functions (h_1) in our implementation!
- a fingerprint hash function f that takes an item from the universe and outputs a number from 1 to $1/\varepsilon$ (we'll call this number the *fingerprint* of the item)
- a cuckooing hash function h that takes in a fingerprint and outputs a number from 0 to m − 1, and
- a hash table T of m slots, where each slot has room for $\log_2(1+1/\varepsilon)$ bits.

• k = 2 hash functions (for now)

- k = 2 hash functions (for now)
- m = 2n slots

- k = 2 hash functions (for now)
- m = 2n slots
- These parameters are easy to analyze, but space inefficient. We'll fix it later.

- k = 2 hash functions (for now)
- m = 2n slots
- These parameters are easy to analyze, but space inefficient. We'll fix it later.
- Also assume that $1/\varepsilon + 1$ is a power of 2, and m is a power of 2.

Initializing a Cuckoo Filter

• Make sure all slots of T are empty

Initializing a Cuckoo Filter

- Make sure all slots of T are empty
- Today: we'll set all slots to 0. A slot in T is nonempty if and only if it stores a number larger than 0.

Invariant

For any $x \in S$, either slot $h_1(x)$ or $h_2(x)$ stores the fingerprint f(x).

Initializing a Cuckoo Filter

- Make sure all slots of T are empty
- Today: we'll set all slots to 0. A slot in T is nonempty if and only if it stores a number larger than 0.

Invariant

For any $x \in S$, either slot $h_1(x)$ or $h_2(x)$ stores the fingerprint f(x).

Question: with this invariant, how can we query to avoid false negatives?

• If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.

- If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.
- Otherwise, we cuckoo:

- If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.
- Otherwise, we cuckoo:
 - Choose some $i \in \{1, \dots, k\}$

- If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.
- Otherwise, we cuckoo:
 - Choose some $i \in \{1, \dots, k\}$
 - Let's say that x_1 is the element stored in $T[h_i(x)]$.

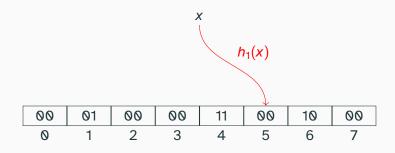
- If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.
- Otherwise, we cuckoo:
 - Choose some $i \in \{1, \ldots, k\}$
 - Let's say that x_1 is the element stored in $T[h_i(x)]$.
 - Then we store f(x) in $T[h_i(x)]$ and "cuckoo" x_1 to another slot

- If there is an h_i such that $T[h_i(x)]$ is nonempty, then store f(x) in $T[h_i(x)]$.
- Otherwise, we cuckoo:
 - Choose some $i \in \{1, \dots, k\}$
 - Let's say that x_1 is the element stored in $T[h_i(x)]$.
 - Then we store f(x) in $T[h_i(x)]$ and "cuckoo" x_1 to another slot
- If we cuckoo more than log *n* elements, we rebuild the filter.

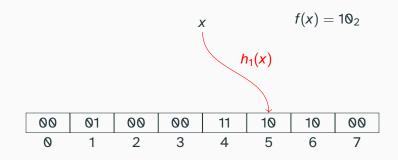
00	01	00	00	11	00	10	00
0	1	2	3	4	5	6	7

Χ

00	01	00	00	11	00	10	00
0	1	2	3	4	5	6	7

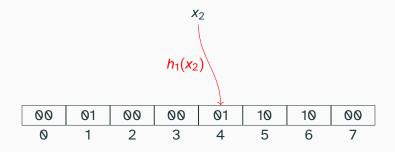


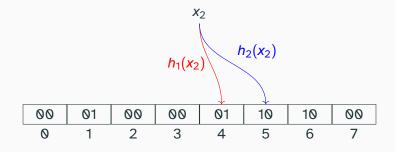
A cuckoo filter with $\varepsilon = 1/3$ and k = 2.

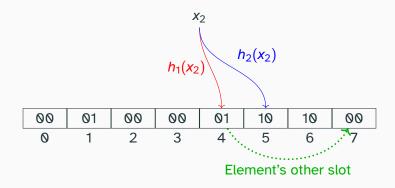


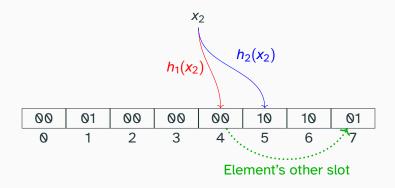
*X*₂

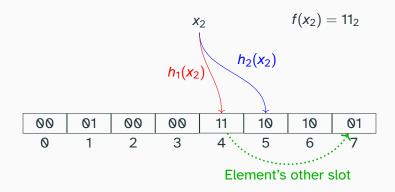
00	01	00	00	01	10	10	00
0	1	2	3	4	5	6	7

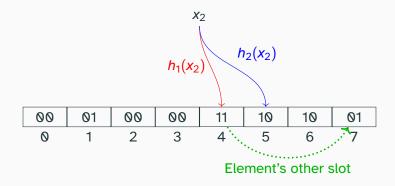












A cuckoo filter with $\varepsilon = 1/3$ and k = 2.

Is our invariant maintained?

There's a problem with what I said!

 We don't have access to the element that hashed to that slot. So how can we calculate its other hash?

- We don't have access to the element that hashed to that slot. So how can we calculate its other hash?
- If k = 2, we can use partial-key cuckoo hashing.

- We don't have access to the element that hashed to that slot. So how can we calculate its other hash?
- If k = 2, we can use partial-key cuckoo hashing.
- Only use one hash h_1 for slots. But then, have a second hash h that maps a *fingerprint* to a number from 1 to m.

- We don't have access to the element that hashed to that slot. So how can we calculate its other hash?
- If k = 2, we can use partial-key cuckoo hashing.
- Only use one hash h_1 for slots. But then, have a second hash h that maps a *fingerprint* to a number from 1 to m.
- Set $h_2(x) = h_1(x) \wedge h(f(x))$. (XOR)

- We don't have access to the element that hashed to that slot. So how can we calculate its other hash?
- If k = 2, we can use partial-key cuckoo hashing.
- Only use one hash h₁ for slots. But then, have a second hash h that maps a
 fingerprint to a number from 1 to m.
- Set $h_2(x) = h_1(x) \wedge h(f(x))$. (XOR)
- Note that then $h_2(x) \wedge h(f(x)) = h_1(x) \wedge h(f(x)) \wedge h(f(x)) = h_1(x)$.

Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

• Calculate $h(\phi)$

Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

- Calculate $h(\phi)$
- Its other slot is s $^{\wedge}$ $h(\phi)$. (This is XOR in C)

Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

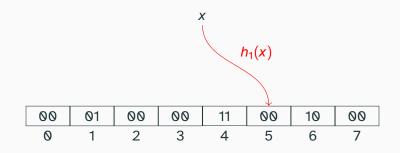
- Calculate $h(\phi)$
- Its other slot is s \wedge $h(\phi)$. (This is XOR in C)

• If that other slot is empty we can store ϕ in it (woo)! Otherwise, take the fingerprint stored there and cuckoo it to its other slot.

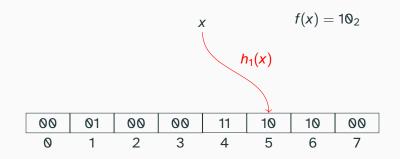
00	01	00	00	11	00	10	00
0	1	2	3	4	5	6	7

Χ

00	01	00	00	11	00	10	00
0	1	2	3	4	5	6	7

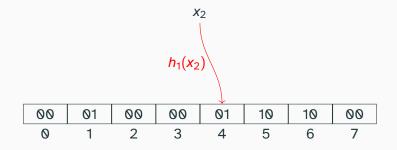


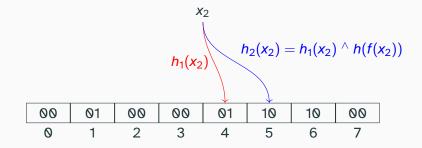
A cuckoo filter with $\varepsilon = 1/3$ and k = 2.

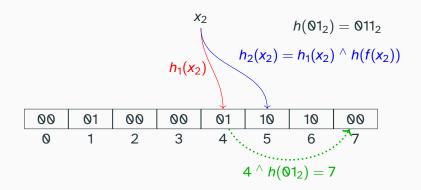


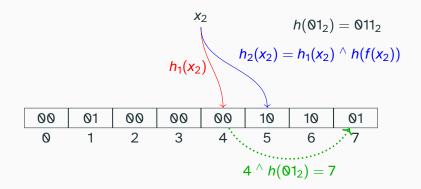
*X*₂

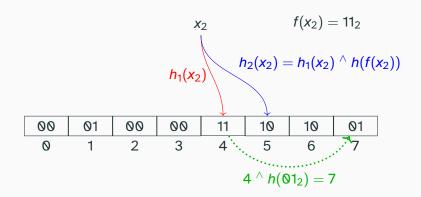
00	01	00	00	01	10	10	00
0	1	2	3	4	5	6	7











Cuckoo Filter Invariant

Using partial-key cuckoo hashing with k = 2:

Invariant

For any $x \in S$, either slot $h_1(x)$ or $h_2(x) = h_1(x) \wedge h(f(x))$ stores the fingerprint f(x).

For higher k:

Invariant

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

Querying a Cuckoo Filter

To query an element q:

```
for i = 1 to k:
    if T[h_i(q)] = f(q):
        return true // q is in S
    //did not find the fingerprint in any slot
    return false // q is not in S
```

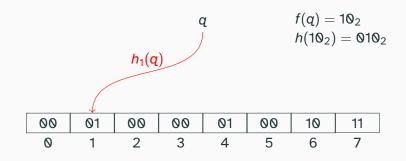
00	01	00	00	01	00	10	11
0	1	2	3	4	5	6	7

Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.

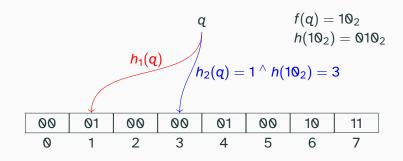
$$q$$
 $f(q) = 10_2$ $h(10_2) = 010_2$

00	01	00	00	01	00	10	11
0	1	2	3	4	5	6	7

Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.



Querying a cuckoo filter with $\varepsilon=1/3$ and k=2.



Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.

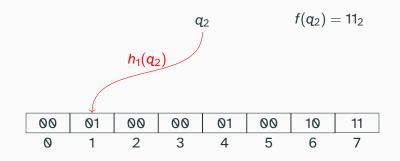
00	01	00	00	01	00	10	11
0	1	2	3	4	5	6	7

Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.

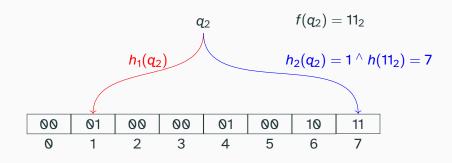
$$q_2 f(q_2) = 11_2$$

00	01	00	00	01	00	10	11
0	1	2	3	4	5	6	7

Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.



Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.



Querying a cuckoo filter with $\varepsilon = 1/3$ and k = 2.

Discussion

• Can a cuckoo filter handle inserts?

Discussion

- Can a cuckoo filter handle inserts?
 - Yes! But as we insert more and more elements the number of cuckoos we expect will get larger and larger (and higher probability of a cycle of cuckoos)
- How about deletes?

Discussion

- Can a cuckoo filter handle inserts?
 - Yes! But as we insert more and more elements the number of cuckoos we expect will get larger and larger (and higher probability of a cycle of cuckoos)
- How about deletes?
 - Oftentimes yes—if you are careful! (Need to make sure we don't delete another element's fingerprint.)

Improved Cuckoo Filter

Performance

• Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.

- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:

- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to $\{1, \dots, 8/\varepsilon\}$. Assume that $8/\varepsilon + 1$ is a multiple of 2.

- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to $\{1, \dots, 8/\varepsilon\}$. Assume that $8/\varepsilon + 1$ is a multiple of 2.
- To query: check all four fingerprints in both slots

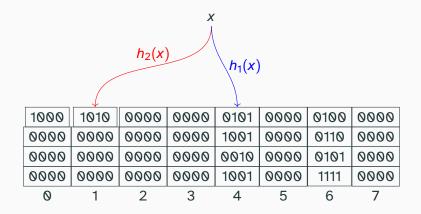
- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to $\{1, \dots, 8/\varepsilon\}$. Assume that $8/\varepsilon + 1$ is a multiple of 2.
- To query: check all four fingerprints in both slots
- To insert: just need to find one empty space in one of the two slots; if all 8 are full then cuckoo

- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to $\{1, \dots, 8/\varepsilon\}$. Assume that $8/\varepsilon + 1$ is a multiple of 2.
- To query: check all four fingerprints in both slots
- To insert: just need to find one empty space in one of the two slots; if all 8 are full then cuckoo
- Make sure you change which slot you cuckoo from! If you always cuckoo from slot 1 you are much more likely to get a cycle!

- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to $\{1, \dots, 8/\varepsilon\}$. Assume that $8/\varepsilon + 1$ is a multiple of 2.
- To query: check all four fingerprints in both slots
- To insert: just need to find one empty space in one of the two slots; if all 8 are full then cuckoo
- Make sure you change which slot you cuckoo from! If you always cuckoo from slot 1 you are much more likely to get a cycle!
- I used a global variable to indicate what slot to cuckoo from; incrementing it each time.

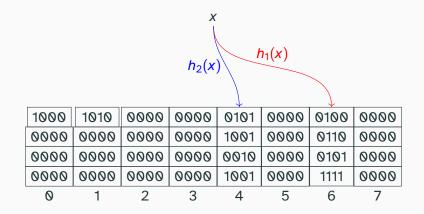
- Currently, have m = 2n slots, so the space is $2n \log_2(1/\varepsilon)$.
- Here is one way to improve that:
- Store room for *four* fingerprints in each hash slot, and make the fingerprints hash to $\{1, \dots, 8/\varepsilon\}$. Assume that $8/\varepsilon + 1$ is a multiple of 2.
- To query: check all four fingerprints in both slots
- To insert: just need to find one empty space in one of the two slots; if all 8 are full then cuckoo
- Make sure you change which slot you cuckoo from! If you always cuckoo from slot 1 you are much more likely to get a cycle!
- I used a global variable to indicate what slot to cuckoo from; incrementing it each time.
- Then can set m=1.05n/4, giving total space usage $1.05n\log_2(8/\varepsilon+1)\approx 1.05n\log_2(1/\varepsilon)+3.15n$.

Example



A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Example 2



A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Bloom filters:

Bloom filters:

• Easy to implement

Bloom filters:

Cuckoo filters:

- Easy to implement
- Fairly efficient for large ε

Bloom filters:

- Easy to implement
- \bullet Fairly efficient for large ε

Cuckoo filters:

Much more space efficient

Bloom filters:

- Easy to implement
- Fairly efficient for large ε

Cuckoo filters:

- Much more space efficient
- Only require 2 hash functions (may improve practical performance)

Bloom filters:

- Easy to implement
- Fairly efficient for large ε

Cuckoo filters:

- Much more space efficient
- Only require 2 hash functions (may improve practical performance)
- Good cache efficiency: only need to access the hash table 2 times, rather than $\log_2(1/\varepsilon)$.

Implementing Effective Hash

Functions

Hashes we need

• h_1 which maps an arbitrary element (a string in Homework 3) to a slot in the hash table

 f which maps an arbitrary element (a string in Homework 3) to a number from 1 to 255 (we'll be doing 8-bit fingerprints)

• h which maps a fingerprint from 1 to 255 to a slot in the hash table

Implementing h

• h is easy because it only needs 255 values

Implementing *h*

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for $i \in \{1, ..., 255\}$, just use hashFingerprint[i-1]

 murmurhash: a popular, fast, hash function that does a good job of "acting random"

 murmurhash: a popular, fast, hash function that does a good job of "acting random"

Will be given to you as part of your starter code

- murmurhash: a popular, fast, hash function that does a good job of "acting random"
- Will be given to you as part of your starter code
- murmurhash outputs 128 bits. We'll use the first 32 bits as h_1 , and the second 32 bits as f

- murmurhash: a popular, fast, hash function that does a good job of "acting random"
- Will be given to you as part of your starter code
- murmurhash outputs 128 bits. We'll use the first 32 bits as h_1 , and the second 32 bits as f
- Use mod to get them down to size

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

• word is the string you would like to hash

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)

```
uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);
```

- word is the string you would like to hash
- length is the length of word (murmurhash does not check for null-termination!)
- seed is the hash function seed (pick a large random number; keep it consistent)
- · hash is the 128 bits of output

```
uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;
```

Cuckoo Filter Analysis

Union Bound

Theorem

Let X and Y be random events. Then

$$Pr(X \text{ or } Y) \leq Pr(X) + Pr(Y).$$

More generally, if X_1, X_2, \dots, X_k are any random events, then

$$\Pr(X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_k) \leq \sum_{i=1}^k \Pr(X_k).$$

Simple but useful tool in randomized algorithms

Union Bound

Theorem

Let X and Y be random events. Then

$$\Pr(X \text{ or } Y) \leq \Pr(X) + \Pr(Y).$$

More generally, if X_1, X_2, \dots, X_k are any random events, then

$$\Pr(X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_k) \leq \sum_{i=1}^n \Pr(X_k).$$

- Simple but useful tool in randomized algorithms
- Always works, even for events that are not independent

Union Bound

Theorem

Let X and Y be random events. Then

$$\Pr(X \text{ or } Y) \leq \Pr(X) + \Pr(Y).$$

More generally, if X_1, X_2, \dots, X_k are any random events, then

$$\Pr(X_1 \text{ or } X_2 \text{ or } \dots \text{ or } X_k) \leq \sum_{i=1}^n \Pr(X_k).$$

- Simple but useful tool in randomized algorithms
- Always works, even for events that are not independent
- Sometimes called "Boole's inequality"

Union Bound Example

• Let's say I have 10 students in a course, and I randomly assign each student an ID between 1 and 100 (these IDs do not need to be unique).

Union Bound Example

• Let's say I have 10 students in a course, and I randomly assign each student an ID between 1 and 100 (these IDs do not need to be unique).

Can you upper bound the probability that some student has ID 1?

• The probability that at least one student has ID 1 is

1 - Pr(no student has ID 1).

• The probability that at least one student has ID 1 is

1 - Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• The probability that at least one student has ID 1 is

1 - Pr(no student has ID 1).

- The probability that a single student has an ID other than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is $(99/100)^{10}$.

The probability that at least one student has ID 1 is

$$1 - Pr(no student has ID 1).$$

- The probability that a single student has an ID other than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is $(99/100)^{10}$.

• Thus, the probability that at least one student has ID 1 is $1-(99/100)^{10}\approx 9.56\%$.

The probability that at least one student has ID 1 is

This is messy! And it would be even worse if the IDs were not independent!

The union bound lets us avoid this work.

- The probability that a single student has an ID other than 1 is 99/100.
- Thus, the probability that all 10 students have an ID other than 1 is $(99/100)^{10}$.

• Thus, the probability that at least one student has ID 1 is $1 - (99/100)^{10} \approx 9.56\%$.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that *any* student has ID 1 is at most the sum, over all 10 students, of 1/100.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that *any* student has ID 1 is at most the sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.

Analysis of Cuckoo Filters

Some assumptions going in:

• all hash functions h_i are uniformly random: any $x \in U$ is mapped to any hash slot $s \in \{0, ..., m-1\}$ with probability 1/m.

Analysis of Cuckoo Filters

Some assumptions going in:

- all hash functions h_i are uniformly random: any $x \in U$ is mapped to any hash slot $s \in \{0, ..., m-1\}$ with probability 1/m.
- Same for the fingerprint hash f: any $x \in U$ is mapped to a given fingerprint $f_x \in \{1, \dots, 1/\varepsilon\}$ with probability ε .

Analysis of Cuckoo Filters

Some assumptions going in:

- all hash functions h_i are uniformly random: any $x \in U$ is mapped to any hash slot $s \in \{0, ..., m-1\}$ with probability 1/m.
- Same for the fingerprint hash f: any $x \in U$ is mapped to a given fingerprint $f_x \in \{1, \dots, 1/\varepsilon\}$ with probability ε .
- We will analyze *without* partial-key cuckoo hashing (we'll assume independent h_1 and h_2)

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

Invariant

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it returns that $q \notin S$. Equivalently, if we query an item $q \in S$, then a filter will always correctly answer $q \in S$.

Invariant

For every $x \in S$, there exists an $i \in \{1, ..., k\}$ such that f(x) is stored in $T[h_i(x)]$.

We can see that the invariant means that there are no false negatives.

Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

• A query $q \notin S$ is a false positive if, for some h_i , $T[h_i(q)] = f(q)$.

Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query $q \notin S$, the filter (incorrectly) returns " $q \in S$ " with probability ε .

• A query $q \notin S$ is a false positive if, for some h_i , $T[h_i(q)] = f(q)$.

• Let's examine each hash h_1 and h_2 individually.

• Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing n elements in 2n slots.

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing n elements in 2n slots.
- If $T[h_1(q)]$ contains a fingerprint, the probability that f(x) = f(q) is ε .

- Let's start with h_1 . What is the probability $T[h_1(q)]$ contains a fingerprint?
- 1/2, because we are storing n elements in 2n slots.
- If $T[h_1(q)]$ contains a fingerprint, the probability that f(x) = f(q) is ε .
- Therefore, the probability that $T[h_1(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.

• What about *h*₂?

- What about *h*₂?
- Same exact analysis: probability that $T[h_2(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.

- What about *h*₂?
- Same exact analysis: probability that $T[h_2(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.
- Are these events independent?

- What about h₂?
- Same exact analysis: probability that $T[h_2(q)]$ contains a fingerprint f(x) = f(q) is $\varepsilon/2$.
- Are these events independent?
- No! If h_1 does not have a collision, we're slightly more likely to have an element collide under h_2

Second: Guarantee: Putting it Together

• q is a false positive if either $T[h_1(q)]$ contains a fingerprint $f(x_1)$ such that $f(x_1) = f(q)$, or $T[h_2(q)]$ contains a fingerprint $f(x_2)$ such that $f(x_2) = f(q)$

Second: Guarantee: Putting it Together

• q is a false positive if either $T[h_1(q)]$ contains a fingerprint $f(x_1)$ such that $f(x_1) = f(q)$, or $T[h_2(q)]$ contains a fingerprint $f(x_2)$ such that $f(x_2) = f(q)$

• Each happens with probability at most $\varepsilon/2$

Second: Guarantee: Putting it Together

- q is a false positive if either $T[h_1(q)]$ contains a fingerprint $f(x_1)$ such that $f(x_1) = f(q)$, or $T[h_2(q)]$ contains a fingerprint $f(x_2)$ such that $f(x_2) = f(q)$
- Each happens with probability at most $\varepsilon/2$

• By union bound, one or the other happens with probability at most $\varepsilon/2 + \varepsilon/2 = \varepsilon$.

Limits of Expectation

• Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.

Limits of Expectation

- Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.
- Would you play this game? (Like in real life, right now.)

Limits of Expectation

- Let's say I charge you \$1000 to play a game. With probability 1 in 1 million, I give you \$10 billion. Otherwise, I give you \$0.
- Would you play this game? (Like in real life, right now.)
- Answer: some of you might, but I'm guessing many of you would not. You're just going to lose \$1000.
- But expectation is good! You expect to win \$9000.

• Rather than giving the average performance, bound the probability performance.

- Rather than giving the average performance, bound the probability of performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?

- Rather than giving the average performance, bound the probability performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?
- Answer: 1/2^k

- Rather than giving the average performance, bound the probability of performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?
- Answer: 1/2^k
- Quicksort has expected runtime $O(n \log n)$. What is the probability that the running time is more than $O(n \log n)$?

- Rather than giving the average performance, bound the probability of performance.
- Let's say I flip a coin k times. On average, I see k/2 heads. But what is the probability I *never* see a heads?
- Answer: 1/2^k
- Quicksort has expected runtime $O(n \log n)$. What is the probability that the running time is more than $O(n \log n)$?
- Answer: O(1/n) (this is why quicksort is not worse than merge sort even though it can be $\Theta(n^2)$: you'll never see the worst case if n is at all large)

• An event happens with high probability (with respect to n) if it happens with probability 1 - O(1/n)

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- We've seen:

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- We've seen:
 - Quicksort is $O(n \log n)$ with high probability

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- We've seen:
 - Quicksort is $O(n \log n)$ with high probability
 - Cuckoo hashing inserts finish without looping with high probability

• An event happens with high probability (with respect to n) if it happens with probability 1 - O(1/n)

- SATISFACTION
 GUARANTEE
- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing inserts require $O(\log n)$ swaps with high probability

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing inserts require $O(\log n)$ swaps with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing inserts require $O(\log n)$ swaps with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.
 - What do you think chaining requires?

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing inserts require $O(\log n)$ swaps with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.
 - What do you think chaining requires?
 - Chaining queries require $O(\frac{\log n}{\log \log n})$ time with high probability

- An event happens with high probability (with respect to n) if it happens with probability 1 O(1/n)
- Some new results (each is O(1) in expectation):
 - Cuckoo hashing inserts require $O(\log n)$ swaps with high probability
 - Linear probing queries require $O(\log n)$ time with high probability.
 - What do you think chaining requires?
 - Chaining queries require $O(\frac{\log n}{\log\log n})$ time with high probability
- With high probability is always with respect to a variable. Assume that it's with respect to *n* unless stated otherwise.

How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)

- How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)
- If I flip k times, I see a heads with probability $1 1/2^k$.

- How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)
- If I flip k times, I see a heads with probability $1 1/2^k$.
- So I need $1/2^k = O(1/n)$. Solving, $k = \Theta(\log n)$.

- How many coins do I need to flip before I see a heads with high probability?
 (With respect to some variable n)
- If I flip k times, I see a heads with probability $1 1/2^k$.
- So I need $1/2^k = O(1/n)$. Solving, $k = \Theta(\log n)$.
- This is (a simplified version of) the analysis leading to the $O(\log n)$ worst case bounds on the last slide

• We'll usually use "with high probability" for concentration bounds

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!
- "With high probability" gives a guarantee that will almost always be met: if *n* is large it becomes vanishingly unlikely that the bound will be violated.

- We'll usually use "with high probability" for concentration bounds
- Expectation states how well the algorithm does on average. Could be much better or worse sometimes!
- "With high probability" gives a guarantee that will almost always be met: if *n* is large it becomes vanishingly unlikely that the bound will be violated.
- Largely fulfills the promise of classic worst-case algorithm analysis, but applied to randomized algorithms