Lecture 9: Bloom Filters and
Cuckoo Filters

Sam McCauley
October 7, 2025

Williams College

Admin

oo
Do
@) O Q‘.O

N

Did everyone have a good mountain day? -I
&
Assignment 3 out today, due next Thursday — B
Cuckoo filters today; streaming Thursday
Best plan (in my opinon)
e Finish cuckoo filter coding part of assignment on Thursday in lab
e Should be very doable if you read through the lab and starter code beforehand
e Finish rest next Thursday
No TA hours during reading period

Assignment 4 next week based on lecture Thursday

Midterm on Friday after Assignment 4; review the Tuesday before

Cuckoo Hashing Wrapup

Cuckoo Hashing [Pagh, Rodler 2005]

A third method of resolving collisions

Queries are O(1) worst case

Insert will still be O(1) in expectation

Comparison to linear probing and chaining?

e Chaining: O(1) worst case inserts; O(1) expected queries. Not as good for
query-heavy workloads!

e Linear probing: more cache-efficient, but both inserts and queries are only O(1)
on average

Cuckoo Hashing Queries

e Query: Just check both slots

Cuckoo Hashing Queries

e Query: Just check both slots

Cuckoo Hashing Queries

(e Query: Just check both slots
c
o

Cuckoo Hashing Queries

e Query: Just check both slots

Cuckoo Hashing Inserts

e e Let's say we want to insert a new
/\ item a. How can we do that?
hi(e) ha(e) e Easy case: if hy(a) or hy(a) is free,
j \v can just store a immediately.
c 2 | x U e What do we do if both are full?
N 3 4 5 e Move one of the items in the way to

its other slot!

e If there's an item THERE, recurse

Cuckoo Hashing Inserts

e e Let's say we want to insert a new
item a. How can we do that?

hi(e) ha(e) e Easy case: if hy(a) or hy(a) is free,
j \v can just store a immediately.
e What do we do if both are full?
c a | x u
1 > 3 2 ° !Vlove one of the items in the way to
its other slot!

ha(u) =8 e If there's an item THERE, recurse

Cuckoo Hashing Inserts

e e Let's say we want to insert a new
/\ item a. How can we do that?
e)

ha(e) e Easy case: if hy(a) or hy(a) is free,

m \v can just store a immediately.

e What do we do if both are full?

X
1 > 3 2 ° !Vlove one of the items in the way to
its other slot!

ha(u) =8 e If there's an item THERE, recurse

Does this always work?

e Recall our invariant: every item x is stored at h1(x) or hz(x)

e Is there a simple example where this is impossible?

e One potential problem: three items x, y, and z all have the same two hashes.
Can’t maintain the invariant!

o If this occurs, our insert algorithm (so far) loops infinitely

a b (o

Does this always work?

e Recall our invariant: every item x is stored at hy(x) or ha(x)
e Is there a simple example where this is impossible?

e One option: three items X, y, and z all have the same two hashes

e From last time: What is the probability that this exact scenario happens if we
store n items in 2n slots? Let’s do this on the board.

Does this always work?

Recall our invariant: every item x is stored at h¢(x) or ha(x)

Is there a simple example where this is impossible?

One option: three items x, y, and z all have the same two hashes

From last time: What is the probability that this exact scenario happens if we
store n items in 2n slots? Let’s do this on the board.

e There exist slots s; and s, such that all of x, y, and z all hash to one of these two
slots

o For a given x, y, z, s1, and sy, how often does hy(x) = h4(y) = hi(z) = sy and
ha(x) = ha(y) = ha(2) = s2?

o (1/2n)°

o There are (})(%) choices of x, y, z, s, and s,

e So this happens with probability ©(n3n?/n®) = ©(1/n).

Does this always work?

Recall our invariant: every item x is stored at hq(x) or hy(x)

Is there a simple example where this is impossible?

One option: three items X, y, and z all have the same two hashes

This occurs with probability O(1/n)

With more work: probability of an insert looping infinitely is O(1/n) (proof is
outside the scope of the course)

Does this always work?

Recall our invariant: every item x is stored at hq(x) or hy(x)

Is there a simple example where this is impossible?

One option: three items X, y, and z all have the same two hashes
This occurs with probability O(1/n)

With more work: probability of an insert looping infinitely is O(1/n) (proof is
outside the scope of the course)

Inserts loop very rarely if n is large (you probably will not see this happen on
Assignment 3). Usually put in a maximum number of iterations, after which the
insert fails, to prevent looping infinitely

Cuckoo Hashing Performance

hi(q) =1

e Queries: O(1) worst case operations

ha(q)
[]
C X
) 3

Cuckoo Hashing Performance

hi(q) =1

e Queries: O(1) worst case operations
e Query cache performance?

ha(q)
[]
C X
) 3

Cuckoo Hashing Performance

q
/ \
h‘((q“ hao(q) = 4
C X
] 1 2 3 4

e Queries: O(1) worst case operations
e Query cache performance?
e Two cache misses per query. Is that good?

Cuckoo Hashing Performance

7 \
h?q) =1 ha(@) = 4
(o a X u
0 1 2 3 4

e Queries: O(1) worst case operations
e Query cache performance?
e Two cache misses per query. Is that good?
¢ Kind of! Probably better than chaining. But linear probing has only ~one cache
miss on any query, so long as log n items fit in a cache line

Cuckoo Hashing Performance

N

hi(e)

hz(e)

< b

Cuckoo Hashing Performance

N

hic)=4 _Mm(e) ha(e)

§
< b

e What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

Cuckoo Hashing Performance

N

hic)=4 _Mm(e) ha(e)

§
< b

e What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?
o Result: O(1) cuckoos in expectation, so inserts are O(1)

Cuckoo Hashing Performance

N

hic)=4 _Mm(e) ha(e)

§
< b

e What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?
o Result: O(1) cuckoos in expectation, so inserts are O(1)
e Idea: half the slots are empty, so each time we go to a new slot, we should have a
~ 1/2 probability of being done

Cuckoo Hashing Performance

N

hic)=4 _Mm(e) ha(e)

§
< b

e What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?
o Result: O(1) cuckoos in expectation, so inserts are O(1)
e Idea: half the slots are empty, so each time we go to a new slot, we should have a
~ 1/2 probability of being done
e True analysis is nontrivial since these events are not independent

Cuckoo Hashing Performance

R
e Queries: O(1) worst case

Cuckoo Hashing Performance

e Queries: O(1) worst case

e Insert cache performance?

Cuckoo Hashing Performance

e Queries: O(1) worst case

e Insert cache performance?

e One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

Cuckoo Hashing Performance

e Queries: O(1) worst case

e Insert cache performance?

e One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

e In practice, inserts are a downside for cuckoo hashing due to poor constants

Cuckoo Hashing Performance

e Queries: O(1) worst case

e Insert cache performance?

e One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

e In practice, inserts are a downside for cuckoo hashing due to poor constants

e Idea: cuckoo hashing does great on queries (though with potentially worse
cache efficiency than linear probing), but pays for it with relatively expensive
inserts

Filters: Goals for Today

What we want

e |Norsi-case compression Text Caption

What we want

e |Norsi-case compression Text Caption

e Lossy compression with algorithmic guarantees

What we want

e |Norsi-case compression Text Caption
e Lossy compression with algorithmic guarantees

e That is to say: we know what we're losing and what we're not

Filter

e Stores a set S of size n (basically: think of it as a (lossy) compressed
dictionary)

Filter

e Stores a set S of size n (basically: think of it as a (lossy) compressed
dictionary)

e Answers queries q of the form: “is q € S?”

e Really just a very simple dictionary that only returns whether or not a key exists
(no values)

Filter

e Stores a set S of size n (basically: think of it as a (lossy) compressed
dictionary)

e Answers queries q of the form: “is q € S?”

e Really just a very simple dictionary that only returns whether or not a key exists
(no values)

e All elements x € S and all queries must be from some universe U

Filter

Stores a set S of size n (basically: think of it as a (lossy) compressed
dictionary)

Answers queries q of the form: “is q € S?”

e Really just a very simple dictionary that only returns whether or not a key exists
(no values)

All elements x € S and all queries must be from some universe U

(Only need U to make sure that we can hash everything.)

Filter Guarantees

Guarantee (No False Negatives)

A filter is always correct when it returns that q ¢ S.
Equivalently, if we query an item q € S, then a filter will always correctly answer

qeESs.

A filter always reports that every key in your dictionary exists. But it may (falsely)
report that others exist as well

Guarantee 1 Sanity check

e Can you create a very simple data structure that has no false negatives?

Guarantee 1 Sanity check

e Can you create a very simple data structure that has no false negatives?

e Easiest option: my data structure stores nothing. On every query q, my data
structure responds “q € S.”

Guarantee 1 Sanity check

e Can you create a very simple data structure that has no false negatives?

e Easiest option: my data structure stores nothing. On every query q, my data
structure responds “q € S.”

e Another easy option: I store the entire set S using a standard dictionary
(perhaps using a hash table). On a query q, I look it up and give the correct
answer.

Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability «.

We want our filter to have a false positive rate ¢ < 1.

"The cuckoo filter will actually need 14 1/ to be a power of 2.

Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability «.

We want our filter to have a false positive rate ¢ < 1.

The filters we will talk about today will work for any false positive rate ¢, so long as
1/¢ is a power of 2.1

So we can, if we want, guarantee a false positive rate of 1/2, or 1/1824—whatever is
best for your use case.

"The cuckoo filter will actually need 14 1/ to be a power of 2.

Guarantee 2 Sanity check

e Can you create a very simple data structure that has a good false positive
rate?

Guarantee 2 Sanity check

e Can you create a very simple data structure that has a good false positive
rate?

o I store the entire set S using a standard dictionary (perhaps using a hash
table). On a query q, I look it up and give the correct answer. This satisfies
Guarantee 2 with ¢ = 0.

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

e What happens when I query for the word x = “fox”?

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

e What happens when I query for the word x = “fox”?

e The filter always returns yes, x € S

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

e What happens when I query for the word x = “fox”?

e The filter always returns yes, x € S

e What happens when I query for the (non) word “fhqwhgads”?

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

e What happens when I query for the word x = “fox”?

e The filter always returns yes, x € S

e What happens when I query for the (non) word “fhqwhgads”?

e With probability ¢, the filter returns yes, x € S

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

e What happens when I query for the word x = “fox”?

e The filter always returns yes, x € S

e What happens when I query for the (non) word “fhqwhgads”?

e With probability ¢, the filter returns yes, x € S

e With probability 1 — ¢, the filter returns no, x ¢ S

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?

e We tradeoff space versus accuracy using .

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?
e We tradeoff space versus accuracy using .

e Smaller e means the compression is not as lossy

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?
e We tradeoff space versus accuracy using .

e Smaller e means the compression is not as lossy

¢ We make fewer mistakes, but we need more space

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?
e We tradeoff space versus accuracy using .

e Smaller e means the compression is not as lossy
¢ We make fewer mistakes, but we need more space

e Larger € means more aggressive compression

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?
e We tradeoff space versus accuracy using .

e Smaller e means the compression is not as lossy
¢ We make fewer mistakes, but we need more space

e Larger € means more aggressive compression

Space is very small, but filter is very inaccurate!

Tradeoff

e Obviously, smaller ¢ is better-it means we make fewer mistakes.

e So what's the tradeoff?
e We tradeoff space versus accuracy using .

e Smaller e means the compression is not as lossy
¢ We make fewer mistakes, but we need more space

e Larger € means more aggressive compression

Space is very small, but filter is very inaccurate!

o A filter generally requires O(nlog1/¢) bits of space.

Space bounds

We talk about two filters today:

Space bounds

We talk about two filters today:

o A Bloom filter requires 1.44n log,(1/¢) bits of space.

Space bounds

We talk about two filters today:

o A Bloom filter requires 1.44n log,(1/¢) bits of space.

e The cuckoo filter uses 1.85n log,(1+ 1/¢) + 3.15n bits of space.

Space bounds

We talk about two filters today:

o A Bloom filter requires 1.44n log,(1/¢) bits of space.

e The cuckoo filter uses 1.85n log,(1+ 1/¢) + 3.15n bits of space.

How can we interpret this?

Space bounds

We talk about two filters today:

o A Bloom filter requires 1.44n log,(1/¢) bits of space.

e The cuckoo filter uses 1.85n log,(1+ 1/¢) + 3.15n bits of space.
How can we interpret this?

e Plugging in numbers: if we have a cuckoo filter with ¢ = 1/63, the filter takes
less than 1 byte of space per element being stored.

Space bounds

We talk about two filters today:

o A Bloom filter requires 1.44n log,(1/¢) bits of space.

e The cuckoo filter uses 1.85n log,(1+ 1/¢) + 3.15n bits of space.
How can we interpret this?

e Plugging in numbers: if we have a cuckoo filter with ¢ = 1/63, the filter takes
less than 1 byte of space per element being stored.

¢ Notice that this space does not depend on the size of the original elements.
We can store very long strings and still require only one byte per string stored.

History and Discussion

Bloom filter
. T

e Invented by Burton H. Bloom in
1970

e Invented by Burton H. Bloom in
1970
e Original publication only talked

about good practical performance;
theoretical analysis came later.

Cuckoo filter

e Invented by Fan et al. in 2014

Cuckoo filter

e Invented by Fan et al. in 2014

e Provides better space usage for
small ¢ (i.e. when the compression
is not too lossy)

Cuckoo filter

e Invented by Fan et al. in 2014

e Provides better space usage for
small ¢ (i.e. when the compression
is not too lossy)

e Requires fewer hashes; has better
cache performance.

When should you use a filter?

Computer Memory Hierarchy Ist example: avoiding
misses

small size processor registers
small capacity very fast, very expensive
power on
immediate term
small size processor cache
small capacity very fast, very expensive
medium size power on random access memory
medium capacity very short term fast, affordable
small size power off flash / USB memory
large capacity short term slower, cheap
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup
very large capacity long term

very slow, affordable

cache

When should you use a filter?

Computer Memory Hierarchy 1st example: avoiding cache
misses

small size processor registers

K h
e Let's say we have a very
power on l. bl. f d
medime e arge table of data
small size processor cache
small capacity very fast, very expensive
medium size power on random access memory
medium capacity very short term fast, affordable
small size power off flash / USB memory
large capacity short term slower, cheap
large size power off hard drives
very large capacity mid term

slow, very cheap

large size power off tape backup
very large capacity long term very slow, affordable

When should you use a filter?

1st example: avoiding cache
misses

Computer Memory Hierarchy

e ey e e apensive e Let's say we have a very
T large table of data
small size } pro(ess‘orvc:vcllex e .
e \ e e Large enough that it doesn’t
medium size poweron random access memory f-it -in L3

medium capacity very short term fast, affordable

¢ Maybe it doesn’t even fit

small size power off flash / USB memory
large capacity short term slower, cheap . RA
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup

very large capacity long term very slow, affordable

When should you use a filter?

Computer Memory Hierarchy

small size
small capacity

power on

immediate term
small size
small capacity

medium size power on

processor registers
very fast, very expensive

processor cache
very fast, very expensive

random access memory

flash / USB memory
slower, cheap

hard drives
slow, very cheap

medium capacity very short term fast, affordable
small size power off
large capacity short term
large size power off
very large capacity mid term
large size power off
very large capacity long term

tape backup
very slow, affordable

1st example: avoiding cache
misses
e Let's say we have a very
large table of data
e Large enough that it doesn’t
fitin L3
¢ Maybe it doesn’t even fit
in RAM

e Frequently query items not
in the table

Common filter usage

q

Lookup(qQ) ~
-

-

Queries to the entire dataset are very expensive!

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the
table. (queryq ¢ S)

e Classic example: dictionary of unusually-hyphenated words for a spellchecker.

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the
table. (queryq ¢ S)

e Classic example: dictionary of unusually-hyphenated words for a spellchecker.

e Checking if key already exists before an insert (deduplication in general)

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the
table. (queryq ¢ S)

e Classic example: dictionary of unusually-hyphenated words for a spellchecker.
e Checking if key already exists before an insert (deduplication in general)

e Check for malicious URLs

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the
table. (queryq ¢ S)

Classic example: dictionary of unusually-hyphenated words for a spellchecker.

Checking if key already exists before an insert (deduplication in general)

Check for malicious URLs

Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative
queries.

Common filter usage

Lof+]sfo]]e]o]x]

Filters can be used to “filter out” negative membership queries, improving
performance.

Common filter usage

Lof+]sfo]]e]o]x] =

Filters are so small that they can fit in local memory.

Common filter usage

Lof+]sfo]]e]o]x]

Common filter usage

a

IsqéS?

L
Lof+]sfo]]e]o]x]

Common filter usage

a

IsqéS?

Lof+]sfo]]e]o]x]

Fast in-memory query.

Common filter usage

Yes, q e€S.

Lof+]sfo]]e]o]x]

Common filter usage

Yes, q e€S.

Lof+]sfo]]e]o]x]

If filter reports q € S, access the table.

If q ¢ S (false positive), still do an unnecessary access.

Common filter usage

a

IsqéS?

L
Lof+]sfo]]e]o]x]

Common filter usage

o}

qu¢s

Lof+]sfo]]e]o]x]

Common filter usage

o}

No,cigéS.

Lof+]sfo]]e]o]x]

Always correct! Don’t need to access table.

Common filter usage

e With O(nlog1/¢) local memory (perhaps fitting in L3 cache), can filter out 1—¢
cache misses for keys q ¢ S.

Common filter usage

e With O(nlog1/¢) local memory (perhaps fitting in L3 cache), can filter out 1—¢
cache misses for keys q ¢ S.

e Greatly reduces number of remote accesses, thereby reducing time.

When should you use a filter?

2nd example: Approximately storing a set

e Before, we stored the actual set S. (It was expensive to access, but we stored
it.)

When should you use a filter?

2nd example: Approximately storing a set

e Before, we stored the actual set S. (It was expensive to access, but we stored
it.)

e But what if we don’t want to?

When should you use a filter?

2nd example: Approximately storing a set

e Before, we stored the actual set S. (It was expensive to access, but we stored
it.)

e But what if we don’t want to?

e Example: approximate spell checker

Approximate spell checker

P 100% 8§

i“ GUARANTEE [i
e

e Want to build a spell checker; don’t have room to store dictionary V\;\,

Approximate spell checker

100%
&

i GUARANTEE i
e

e Want to build a spell checker; don’t have room to store dictionary v*\

e Store the words in a filter. What do our guarantees mean?

Approximate spell checker

100%
&

i GUARANTEE i
e

*

e Want to build a spell checker; don’t have room to store dictionary \AY

e Store the words in a filter. What do our guarantees mean?

e Guarantee 1: if we query a correctly-spelled word, it is never marked as
misspelled

Approximate spell checker
100%

¥ »
i GUARANTEE i
e

*’
V'

e Want to build a spell checker; don’t have room to store dictionary
e Store the words in a filter. What do our guarantees mean?

e Guarantee 1: if we query a correctly-spelled word, it is never marked as
misspelled

e Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it
misspelled) with probability ¢

Approximate spell checker
100%

i GUARANTEE i
e

*

VN

e Want to build a spell checker; don’t have room to store dictionary
e Store the words in a filter. What do our guarantees mean?

e Guarantee 1: if we query a correctly-spelled word, it is never marked as
misspelled

e Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it
misspelled) with probability ¢

e Using only a byte or so per item, can do almost as well as storing a full
dictionary! (Roughly 98% accuracy.)

Bloom Filters

Bloom Filter

A Bloom filter consists of:

e k = log, 1/¢ hash functions, which I will denote using h+, ha, . .., hg,

Bloom Filter

A Bloom filter consists of:

e k = log, 1/¢ hash functions, which I will denote using h+, ha, . .., hg,

o Bit array A of m = nklog, e ~ 1.44nlog, ! bits.

Bloom Filter

A Bloom filter consists of:

e k = log, 1/¢ hash functions, which I will denote using h+, ha, . .., hg,
o Bit array A of m = nklog, e ~ 1.44nlog, ! bits.

e Since we're doing compression, we measure space in bits, and track constants

Bloom Filter

A Bloom filter consists of:

e k = log, 1/¢ hash functions, which I will denote using h+, ha, . .., hg,
o Bit array A of m = nklog, e ~ 1.44nlog, ! bits.

e Since we're doing compression, we measure space in bits, and track constants

e Foreachi=1,... .k, hj: U— {0,...,m — 1} (that is to say, h; maps an
element from the universe of possible elements U to a slot in the hash table).

Bloom Filter

A Bloom filter consists of:

k = log, 1/ hash functions, which I will denote using h1, ha, ..., hg,

Bit array A of m = nklog, e ~ 1.44nlog, ! bits.

e Since we're doing compression, we measure space in bits, and track constants

Foreachi=1,...,k, h;: U— {0,...,m — 1} (that is to say, h; maps an
element from the universe of possible elements U to a slot in the hash table).

Assume 1/¢ is a power of 2; round m up to the nearest integer

Building a Bloom Filter

e Begin with A[i] = O for all i. (Basically, just calloc the bit array.)

e Then add the items one at a time by setting all their slots to 1:

for each x in S:
for i = 1 to k:
Alh_i(x)] =1

Building a Bloom Filter

oo f[ofofeoef[o[of[e[6]
® 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

oo f[ofofeoef[o[of[e[6]
® 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

b3

h4

o [o |
o 1

~—~~

x)

N | = k-

[o [o oo |06 |
3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

hz(X)
h-](X)

I O T B R R B R
o 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

h1(x)

I O I T O B B
o 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

h1(x)

I O I T O B B
o 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

h1(x)

I N O O R B
o 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

h1(x)

I B I B O B B
e 1 2 3 4 5 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

hs(y)

ha(y)

h1(x)

I O T B I N B B
o 1 2 3 4 5 6 7 8

Inserting two elements x and y into a Bloom filter with ¢ = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Invariant

e What invariant does this data structure satisfy?

Invariant

e What invariant does this data structure satisfy?

A Bloom filter storing a set S using hashes h1, ... hi satisfies Alh;j(x)] = 1 for all
x€Sandallie{1,... k}

Querying a Bloom filter

On a query q, we check all the hash slots to see if any stores O:

for i = 1 to k:
if Alh_i(q)] == 0:
return false //gq is not in S

// we have A[h_i(q)] = 1 for all h_i
return true //q 1is in S

Query example

1 le 1o 1 [e]1]e [1]
® 1 2 3 4 5 6 7 8

An example query to an element not in the set; k = 3.

Query example

hi(q)

1 lefr e 1 [e]1][e [1]
® 1 2 3 4 5 6 7 8

An example query to an element not in the set; k = 3.

Query example

hi(a) hz(q)

1 lefr e [e]1]e [1]
® 1 2 3 4 5 6 7 8

An example query to an element not in the set; k = 3.

Query example 2

1 le 1o 1 [e]1]e [1]
1 2 3 4 5 6 7 8

An example false positive query.

Query example 2

Q

hi(a)

[o [1 [o [1]
5 6 7 8

1 e[[6 |
1 2 3

Nl

An example false positive query.

Query example 2

q
ha(a)
hi(a)
(1 le 1 Jef[1[]e]1[e]1]
e 1 2 3 4 5 6 7 8

An example false positive query.

Query example 2

q
hs(a) hz(q)
hi(q)
1 [e] 1o 1 [ef[1][]| 1]
® 1 2 3 4 5 6 7 8

An example false positive query.

Query example 2

ha(a)

hs(q

In pairs: is it possible to insert a new item into a Bloom
filter?

Is it possible to delete an item?

Discussion

e Can we insert into a Bloom filter?

Discussion

e Can we insert into a Bloom filter?

e Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

Discussion

e Can we insert into a Bloom filter?

e Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

e Can we delete?

Discussion

e Can we insert into a Bloom filter?

e Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

e Can we delete?

¢ No. If we flip a bit from 1to ®, it may cause a false negative, violating Guarantee
1.

Bloom filter analysis

e Assume our hashes h; are perfectly uniform random: any x € U is mapped to
any hash slot s € {®,...,m — 1} with probability 1/m; independently of any
other hash.

e Let’s strategize: what about the Bloom filter can we use to prove that
Guarantee 1 and Guarantee 2 hold?

Guarantee 1

Guarantee (No False Negatives)

If we query an item q € S, then a filter will always answer q € S.

Guarantee 1

Guarantee (No False Negatives)

If we query an item q € S, then a filter will always answer q € S.

By the Bloom filter Invariant, if q € S, then A[h;(q)] = 1foralli € {1,...k}.

e This means that the query algorithm always returns “q € S.”

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

e Assume: each entry of A is 1 with probability 1/2

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

e Assume: each entry of A is 1 with probability 1/2

e Only get a false positive if every bit is a 1

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

e Assume: each entry of A is 1 with probability 1/2

e Only get a false positive if every bit is a 1

e Are these events independent?

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

e Assume: each entry of A is 1 with probability 1/2
e Only get a false positive if every bit is a 1
e Are these events independent?

¢ No! But it seems like the independence isn’t too big of a deal...let's assume
they're independent for now.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

Assume: each entry of A is 1 with probability 1/2

Only get a false positive if every bit is a 1

Are these events independent?

¢ No! But it seems like the independence isn’t too big of a deal...let's assume
they're independent for now.

Occurs with probability (1/2)K = (1/2)'0g2(1/2)

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

High-level argument:

Assume: each entry of A is 1 with probability 1/2

Only get a false positive if every bit is a 1

Are these events independent?

¢ No! But it seems like the independence isn’t too big of a deal...let's assume
they're independent for now.

Occurs with probability (1/2)K = (1/2)'0g2(1/2)
(1/2)|ogz(1/6) =5

Cuckoo Filter

Assignment 3

e In short: you'll implement a cuckoo filter to speed up a sequence of dictionary
queries

Assignment 3

e In short: you'll implement a cuckoo filter to speed up a sequence of dictionary
queries

e You're looking for “bilingual palindromes”: strings whose reverse is a word in
another language

Assignment 3

e In short: you'll implement a cuckoo filter to speed up a sequence of dictionary
queries

e You're looking for “bilingual palindromes”: strings whose reverse is a word in
another language

e Most words are not bilingual palindromes, so a filter can significantly speed up
queries

Cuckoo Filter

A cuckoo filter consists of:

e k hash functions denoted by hq,h,, ..., hg (k is a constant)
o We’'ll eventually only use one of these hash functions (h4) in our implementation!

Cuckoo Filter

A cuckoo filter consists of:

e k hash functions denoted by hq,h,, ..., hg (k is a constant)
o We’'ll eventually only use one of these hash functions (h4) in our implementation!

e a fingerprint hash function f that takes an item from the universe and outputs
a number from 1to 1/e (we’ll call this number the fingerprint of the item)

Cuckoo Filter

A cuckoo filter consists of:

e k hash functions denoted by hq,h,, ..., hg (k is a constant)
o We’'ll eventually only use one of these hash functions (h4) in our implementation!

e a fingerprint hash function f that takes an item from the universe and outputs
a number from 1to 1/e (we’ll call this number the fingerprint of the item)

e a cuckooing hash function h that takes in a fingerprint and outputs a number
from © tom — 1, and

Cuckoo Filter

A cuckoo filter consists of:

k hash functions denoted by hq, h,, ..., hg (k is a constant)
o We’'ll eventually only use one of these hash functions (h4) in our implementation!

a fingerprint hash function f that takes an item from the universe and outputs
a number from 1to 1/e (we’ll call this number the fingerprint of the item)

a cuckooing hash function h that takes in a fingerprint and outputs a number
from © tom — 1, and

a hash table T of m slots, where each slot has room for log,(1+ 1/¢) bits.

Some initial parameters

e k = 2 hash functions (for now)

Some initial parameters

e k = 2 hash functions (for now)

e m = 2n slots

Some initial parameters

e k = 2 hash functions (for now)
e m = 2n slots

e These parameters are easy to
analyze, but space inefficient. We’'ll
fix it later.

Some initial parameters

e k = 2 hash functions (for now)

e m = 2n slots

These parameters are easy to
analyze, but space inefficient. We’'ll
fix it later.

Also assume that 1/ + 1is a power
of 2, and m is a power of 2.

Initializing a Cuckoo Filter

e Make sure all slots of T are empty

Initializing a Cuckoo Filter

e Make sure all slots of T are empty

e Today: we'll set all slots to 0. A slot in T is nonempty if and only if it stores a
number larger than O.

For any x € S, either slot h1(x) or ha(x) stores the fingerprint f(x).

Initializing a Cuckoo Filter

e Make sure all slots of T are empty

e Today: we'll set all slots to 0. A slot in T is nonempty if and only if it stores a
number larger than O.

For any x € S, either slot h1(x) or ha(x) stores the fingerprint f(x).

Question: with this invariant, how can we query to avoid false negatives?

Inserting into a Cuckoo Filter

e If there is an h; such that T[h;(x)] is nonempty, then store f(x) in T[h;(x)].

Inserting into a Cuckoo Filter

e If there is an h; such that T[h;(x)] is nonempty, then store f(x) in T[h;(x)].

e Otherwise, we cuckoo:

Inserting into a Cuckoo Filter

e If there is an h; such that T[h;(x)] is nonempty, then store f(x) in T[h;(x)].
e Otherwise, we cuckoo:

e Choose somei e {1,... k}

Inserting into a Cuckoo Filter

e If there is an h; such that T[h;(x)] is nonempty, then store f(x) in T[h;(x)].
e Otherwise, we cuckoo:

e Choose somei e {1,... k}

o Let's say that xq is the element stored in T[h;(x)].

Inserting into a Cuckoo Filter

e If there is an h; such that T[h;(x)] is nonempty, then store f(x) in T[h;(x)].
e Otherwise, we cuckoo:

e Choose somei e {1,... k}
o Let's say that xq is the element stored in T[h;(x)].

e Then we store f(x) in T[h;(x)] and “cuckoo” x4 to another slot

Inserting into a Cuckoo Filter

e If there is an h; such that T[h;(x)] is nonempty, then store f(x) in T[h;(x)].
e Otherwise, we cuckoo:

e Choose somei e {1,... k}
o Let's say that xq is the element stored in T[h;(x)].

e Then we store f(x) in T[h;(x)] and “cuckoo” x4 to another slot

e If we cuckoo more than log n elements, we rebuild the filter.

Cuckoo Filter Insert First Attempt

| 00 | o1 | 00 [80 | 11 | 88 | 18 | 06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

| 00 | o1 | 00 [80 | 11 | 88 | 18 | 06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

h1(x)

| 00 | o1 | o0 [80 | 11 | 88 | 18 | 06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

h1(x)

|00 | o1 | o0 [80 | 11 | 18 | 18 | 06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2

| o0 | o1 [o0 [o0 [&1 [18 [18 | 06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2

hi(x2)

| o0 | o1 [o0 [o0 [01 [18 [18 [06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2

h1 (Xz) hZ(XZ)

| o0 | o1 [o0 [o0 [&1 [18 [18 | 06 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2

h1 (Xz) hZ(XZ)

| o0 | o1 [o0 [o0 [&1 [18 [18 [06 |

Element’s other slot

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2

h1 (Xz) hZ(XZ)

| o0 | o1 [o0 [60 [00 | 18 [18 [o1 |

Element’s other slot

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2 f(Xz) = 112

h1 (Xz) hZ(XZ)

o0 [o1 [o0 [00 [11 [18 [18 [01]

Element’s other slot

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

X2

h-] (Xz) hz(Xz)

|00 | o1 | o0 [80 | 11 | 18 | 18 | o1 |
R

Element’s other slot

A cuckoo filter with e = 1/3 and k = 2.

Is our invariant maintained?

Implementing Insertions

There’s a problem with what I said!

Implementing Insertions

There’s a problem with what I said!

e We don’t have access to the element that hashed to that slot. So how can we
calculate its other hash?

Implementing Insertions

There’s a problem with what I said!

e We don’t have access to the element that hashed to that slot. So how can we
calculate its other hash?

e If k = 2, we can use partial-key cuckoo hashing.

Implementing Insertions

There’s a problem with what I said!

e We don’t have access to the element that hashed to that slot. So how can we
calculate its other hash?

e If k = 2, we can use partial-key cuckoo hashing.

e Only use one hash h4 for slots. But then, have a second hash h that maps a
fingerprint to a number from 1to m.

Implementing Insertions

There’s a problem with what I said!

We don’t have access to the element that hashed to that slot. So how can we
calculate its other hash?

e If k = 2, we can use partial-key cuckoo hashing.

Only use one hash hy for slots. But then, have a second hash h that maps a
fingerprint to a number from 1to m.

Set hy(x) = hy(x) * h(f(x)). (XOR)

Implementing Insertions

There’s a problem with what I said!

We don’t have access to the element that hashed to that slot. So how can we
calculate its other hash?

e If k = 2, we can use partial-key cuckoo hashing.

e Only use one hash h4 for slots. But then, have a second hash h that maps a
fingerprint to a number from 1to m.

e Set hy(x) = hy(x) " h(f(x)). (XOR)

« Note that then ha(x) " h(f(x)) = h1(x)"h(f(x)) h(f(x)) = h1(x).

Cuckooing

So to cuckoo a fingerprint ¢ stored in a slot s to its other location:

e Calculate h(¢)

Cuckooing

So to cuckoo a fingerprint ¢ stored in a slot s to its other location:

e Calculate h(¢)

e Its other slot is s * h(¢). (This is XOR in C)

Cuckooing

So to cuckoo a fingerprint ¢ stored in a slot s to its other location:

e Calculate h(¢)

e Its other slot is s * h(¢). (This is XOR in C)

o If that other slot is empty we can store ¢ in it (woo)! Otherwise, take the
fingerprint stored there and cuckoo it to its other slot.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

| o0 [o1 [o0 [00 [11 [80 | 18 | 00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

| o0 [o1 [o0 [00 [11 [80 | 18 | 00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

h-](X)

| o0 [o1 [o0 [o0 [11 [00 [18 | 00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

h-](X)

o0 [o1 [o0 [o0 [11 [18 [18 [00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

X2

| o0 [o1 [o0 [o0 [01 [18 [18 | 00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

X2

h1(x2)

| o0 [o1 [o0 [o0 [01 [18 [18 [00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

X2

n(x2) ha(x2) = hi(x2) " h(f(x2))

| o0 [o1 [o0 [o0 [01 [18 [18 [00 |
® 1 2 3 4 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

2 h(01,) = 811,

n(x2) ha(x2) = hi(x2) " h(f(x2))

| o0 [o1 [o0 [o0 [01 [18 [18 [00 |
) 1 2 3 4™ 5 6 .77

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

2 h(01,) = 811,

n(x2) ha(x2) = hi(x2) " h(f(x2))

| o0 | o1 [o0 [o0 [00 [18 [18 [1]
® 1 2 3 4~ 5 6 7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

X2 f(Xz) = 112

n(x2) ha(x2) = hi(x2) " h(f(x2))

o0 [o1 [o0 [o0 [11 [18 [18 [o1]
o 1 2 3 4. 5 6 “‘7

A cuckoo filter with e = 1/3 and k = 2.

Cuckoo Filter Invariant

Using partial-key cuckoo hashing with k = 2:

For any x € S, either slot h(x) or ha(x) = hy(x) " h(f(x)) stores the fingerprint f(x).

For higher k:

For every x € S, there exists ani € {1,...,k} such that f(x) is stored in T[h;(x)].

Querying a Cuckoo Filter

To query an element q:

for i = 1 to k:
if Tlh_i(q)] = f(q):
return true // q is in S
//did not find the fingerprint in any slot
return false // q is not in S

Querying a Cuckoo Filter: Example

| o0 [o1 [o0 [00 [&1 [00 [18 [11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example

q fla) =18,
h(1®2) = 010,

| o0 [o1 [o0 [00 [&1 [00 [18 [11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example

q fla) =18,
h(1®2) = 010,

hi(a)

| o0 [o1 [o0 [o0 [&1 [00 [18 | 11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example

q fla) =18,
h(1®2) = 010,

m(a) ha(q) =17 h(18,) = 3

| o0 [o1 [o0 [00 [&1 [00 [18 [11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

| o0 | o1 [o0 [00 [&1 [88 [18 | 11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

Q flaz) =12

| o0 | o1 [o0 [00 [&1 [88 [18 | 11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

Q flaz) =12

hi(az)

| o0 | o1 [o0 [00 [&1 [88 [18 | 11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

Q flaz) =12

| o0 | o1 [o0 [00 [&1 [8 [18 | 11]
0 1 2 3 4 5 6 7

Querying a cuckoo filter with e =1/3 and k = 2.

Discussion

e Can a cuckoo filter handle inserts?

Discussion

e Can a cuckoo filter handle inserts?

¢ Yes! But as we insert more and more elements the number of cuckoos we expect
will get larger and larger (and higher probability of a cycle of cuckoos)

e How about deletes?

Discussion

e Can a cuckoo filter handle inserts?

¢ Yes! But as we insert more and more elements the number of cuckoos we expect
will get larger and larger (and higher probability of a cycle of cuckoos)

e How about deletes?

¢ Oftentimes yes—if you are careful! (Need to make sure we don't delete another
element’s fingerprint.)

Improved Cuckoo Filter
Performance

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).
e Here is one way to improve that:

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

e Here is one way to improve that:

e Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1,...,8/c}. Assume that 8 /¢ + 1is a multiple of 2.

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

e Here is one way to improve that:

e Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1,...,8/c}. Assume that 8 /¢ + 1is a multiple of 2.

e To query: check all four fingerprints in both slots

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

Here is one way to improve that:

Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1,...,8/c}. Assume that 8 /¢ + 1is a multiple of 2.
To query: check all four fingerprints in both slots

To insert: just need to find one empty space in one of the two slots; if all 8 are
full then cuckoo

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

e Here is one way to improve that:

e Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1,...,8/c}. Assume that 8 /¢ + 1is a multiple of 2.

e To query: check all four fingerprints in both slots

e To insert: just need to find one empty space in one of the two slots; if all 8 are
full then cuckoo

e Make sure you change which slot you cuckoo from! If you always cuckoo from
slot 1 you are much more likely to get a cycle!

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

e Here is one way to improve that:

e Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1,...,8/c}. Assume that 8/c + 1is a multiple of 2.

e To query: check all four fingerprints in both slots

e To insert: just need to find one empty space in one of the two slots; if all 8 are
full then cuckoo

e Make sure you change which slot you cuckoo from! If you always cuckoo from
slot 1 you are much more likely to get a cycle!

e I used a global variable to indicate what slot to cuckoo from; incrementing it
each time.

Improving the Cuckoo Filter

e Currently, have m = 2n slots, so the space is 2nlog,(1/¢).

e Here is one way to improve that:

e Store room for four fingerprints in each hash slot, and make the fingerprints
hash to {1,...,8/c}. Assume that 8/c + 1is a multiple of 2.

e To query: check all four fingerprints in both slots

e To insert: just need to find one empty space in one of the two slots; if all 8 are
full then cuckoo

e Make sure you change which slot you cuckoo from! If you always cuckoo from
slot 1 you are much more likely to get a cycle!

e I used a global variable to indicate what slot to cuckoo from; incrementing it
each time.

e Then can set m = 1.85n/4, giving total space usage
1.85n log,(8/e + 1) ~ 1.85n log,(1/¢) + 3.15n.

Example

PO N\t

11980 || 1910 | 0686 | 9606 | 181 | 9806 | 9168 | 9866
0000 | 8886 | 66606 [0000 | 1981 | 866806 [8116 | 8868
0000 [0006 [0066 [060 | 0618 | 6688 | 8181 | 6888
0000 | 9986 | 06606 [0000 | 1881 | 8666 [1111 | 8866
o 1 2 3 4 5 6 7

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Example 2

ha(x) ha(x)

11980 || 1910 | 0686 | 9606 | 181 | 9806 | 9168 | 9866
0000 | 8886 | 66606 [0000 | 1981 | 866806 [8116 | 8868
0000 [0006 [0066 [060 | 0618 | 6688 | 8181 | 6888
0000 | 9986 | 06606 [0000 | 1881 | 8666 [1111 | 8866
o 1 2 3 4 5 6 7

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Comparing the Two Filters

Bloom filters:

Comparing the Two Filters

Bloom filters:

e Easy to implement

Comparing the Two Filters

Bloom filters: Cuckoo filters:
e Easy to implement

e Fairly efficient for large ¢

Comparing the Two Filters

Bloom filters: Cuckoo filters:
e Easy to implement e Much more space efficient

e Fairly efficient for large ¢

Comparing the Two Filters

Bloom filters: Cuckoo filters:
e Easy to implement e Much more space efficient
e Fairly efficient for large ¢ e Only require 2 hash functions (may

improve practical performance)

Comparing the Two Filters

Bloom filters:
e Easy to implement

e Fairly efficient for large ¢

Cuckoo filters:
e Much more space efficient

e Only require 2 hash functions (may
improve practical performance)

e Good cache efficiency: only need to
access the hash table 2 times,
rather than log,(1/¢).

Implementing Effective Hash
Functions

Hashes we need

e hy which maps an arbitrary element (a string in Homework 3) to a slot in the
hash table

e f which maps an arbitrary element (a string in Homework 3) to a number from
1to 255 (we'll be doing 8-bit fingerprints)

e h which maps a fingerprint from 1to 255 to a slot in the hash table

Implementing h

e h is easy because it only needs 255 values

Implementing h

e h is easy because it only needs 255 values

e I give you an array of random values in the starter code

Implementing h

e h is easy because it only needs 255 values

e I give you an array of random values in the starter code

e To calculate h(i), fori € {1,...,255}, just use hashFingerprint[i — 1]

Implementing hy and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

Implementing hy and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

e Will be given to you as part of your starter code

Implementing hy and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

e Will be given to you as part of your starter code

e murmurhash outputs 128 bits. We'll use the first 32 bits as hy, and the second
32 bits as f

Implementing hy and f

e murmurhash: a popular, fast, hash function that does a good job of “acting
random”

e Will be given to you as part of your starter code

e murmurhash outputs 128 bits. We'll use the first 32 bits as hy, and the second
32 bits as f

e Use mod to get them down to size

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128 (word, length, seed, hash);

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

e length is the length of word (murmurhash does not check for
null-termination!)

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

e length is the length of word (murmurhash does not check for
null-termination!)

e seed is the hash function seed (pick a large random number; keep it
consistent)

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

e word is the string you would like to hash

e length is the length of word (murmurhash does not check for
null-termination!)

e seed is the hash function seed (pick a large random number; keep it
consistent)

e hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Cuckoo Filter Analysis

Union Bound

Theorem

Let X and Y be random events. Then
Pr(X orY) < Pr(X) + Pr(Y).

More generally, if X1,X,, ..., Xy are any random events, then

K
Pr(XyorXaor ... or Xi) < Z Pr(Xx).
i=1

e Simple but useful tool in randomized algorithms

Union Bound

Theorem

Let X and Y be random events. Then
Pr(X orY) < Pr(X) + Pr(Y).

More generally, if X1,X,, ..., Xy are any random events, then

K
Pr(XyorXaor ... or Xi) < Z Pr(Xx).
i=1

e Simple but useful tool in randomized algorithms

° works, even for events that are not independent

Union Bound

Theorem

Let X and Y be random events. Then
Pr(X orY) < Pr(X) + Pr(Y).

More generally, if X1,X,, ..., Xy are any random events, then

k
Pr(XyorXaor ... or Xi) < Z Pr(Xx).

=1

e Simple but useful tool in randomized algorithms
° works, even for events that are not independent

e Sometimes called “Boole’s inequality”

Union Bound Example

e Let’s say I have 10 students in a course, and I randomly assign each student
an ID between 1 and 100 (these IDs do not need to be unique).

Union Bound Example

e Let’s say I have 10 students in a course, and I randomly assign each student
an ID between 1 and 100 (these IDs do not need to be unique).

e Can you upper bound the probability that some student has ID 1?

Exact Analysis of Student ID Problem

e The probability that at least one student has ID 1is

1— Pr(no student has ID 1).

Exact Analysis of Student ID Problem

e The probability that at least one student has ID 1is

1— Pr(no student has ID 1).

e The probability that a single student has an ID other than 1is 99/100.

Exact Analysis of Student ID Problem

e The probability that at least one student has ID 1is

1— Pr(no student has ID 1).

e The probability that a single student has an ID other than 1is 99/100.

e Thus, the probability that all 18 students have an ID other than 1is (99/100)'°.

Exact Analysis of Student ID Problem

The probability that at least one student has ID 1 is

1— Pr(no student has ID 1).

The probability that a single student has an ID other than 1is 99/100.

Thus, the probability that all 18 students have an ID other than 1is (99/100)S.

Thus, the probability that at least one student has ID 1is
1—(99/188)" ~ 9.56%.

Exact Analysis of Student ID Problem

A
This is messy! And it would be even worse if the

IDs were not independent!

The union bound lets us avoid this work.

Union Bound Analysis of Student Problem

e The probability that a given student has ID 1is 1/100.

Union Bound Analysis of Student Problem

e The probability that a given student has ID 1is 1/100.

e From Union bound: The probability that any student has ID 1 is at most the
sum, over all 10 students, of 1/100.

Union Bound Analysis of Student Problem

e The probability that a given student has ID 1is 1/100.

e From Union bound: The probability that any student has ID 1 is at most the
sum, over all 10 students, of 1/100.

e This gives us an upper bound of 18/100 = 18%.

Analysis of Cuckoo Filters

Some assumptions going in:

¢ all hash functions h; are uniformly random: any x € U is mapped to any hash
slot s € {0®,...,m — 1} with probability 1/m.

Analysis of Cuckoo Filters

Some assumptions going in:

¢ all hash functions h; are uniformly random: any x € U is mapped to any hash
slot s € {0®,...,m — 1} with probability 1/m.

e Same for the fingerprint hash f: any x € U is mapped to a given fingerprint
fx € {1,...,1/e} with probability ¢.

Analysis of Cuckoo Filters

Some assumptions going in:

¢ all hash functions h; are uniformly random: any x € U is mapped to any hash
slot s € {0®,...,m — 1} with probability 1/m.

e Same for the fingerprint hash f: any x € U is mapped to a given fingerprint
fx € {1,...,1/e} with probability ¢.

e We will analyze without partial-key cuckoo hashing (we’ll assume independent
hy and h»)

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it
returns that q ¢ S.

Equivalently, if we query an item
q € S, then a filter will always
correctly answer q € S.

For every x € S, there exists an
i€ {1,...,k} such that f(x) is stored
in T[hi(x)].

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it Invariant

returns that q ¢ S. For every x € S, there exists an
Equivalently, if we query an item i€ {1,...,k} such that f(x) is stored
q € S, then a filter will always in T[hi(x)].

correctly answer q € S.

e We can see that the invariant means that there are no false negatives.

Second Guarantee: False Positive Rate

Guarantee (False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

e Aqueryq ¢ S is a false positive if, for some h;, T[hi(q)] = f(q)-

Second Guarantee: False Positive Rate

Guarantee (False Positive Rate)

A filter has a false positive rate ¢ if, for any query q ¢ S, the filter (incorrectly)
returns “q € S” with probability <.

e Aqueryq ¢ S is a false positive if, for some h;, T[hi(q)] = f(q)-

e Let's examine each hash hq and h, individually.

Second Guarantee: False Positive Rate

e Let’s start with hy. What is the probability T[h1(q)] contains a fingerprint?

Second Guarantee: False Positive Rate

e Let’s start with hy. What is the probability T[h1(q)] contains a fingerprint?

e 1/2, because we are storing n elements in 2n slots.

Second Guarantee: False Positive Rate

e Let’s start with hy. What is the probability T[h1(q)] contains a fingerprint?

e 1/2, because we are storing n elements in 2n slots.

e If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is e.

Second Guarantee: False Positive Rate

Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

1/2, because we are storing n elements in 2n slots.

If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is e.

Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is /2.

Second Guarantee: False Positive Rate

e What about hy?

Second Guarantee: False Positive Rate

e What about hy?

e Same exact analysis: probability that T[h2(q)] contains a fingerprint
f(x) =1f(q)ise/2.

Second Guarantee: False Positive Rate

e What about hy?

e Same exact analysis: probability that T[h2(q)] contains a fingerprint
f(x) =1f(q)ise/2.

e Are these events independent?

Second Guarantee: False Positive Rate

What about hy?

e Same exact analysis: probability that T[h2(q)] contains a fingerprint
f(x) =1f(q)ise/2.

Are these events independent?

No! If hy does not have a collision, we're slightly more likely to have an
element collide under h,

Second: Guarantee: Putting it Together

e q is a false positive if either T[h1(q)] contains a fingerprint f(x7) such that
f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

Second: Guarantee: Putting it Together

e q is a false positive if either T[h1(q)] contains a fingerprint f(x7) such that
f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

e Each happens with probability at most /2

Second: Guarantee: Putting it Together

e q is a false positive if either T[h1(q)] contains a fingerprint f(x7) such that
f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

e Each happens with probability at most /2

e By union bound, one or the other happens with probability at most
e/2+¢e/2=c¢.

Limits of Expectation

Limits of Expectation

e Let's say I charge you $1000 to play a game. With probability 1in 1 million, I
give you $10 billion. Otherwise, I give you $0.

Limits of Expectation

e Let's say I charge you $1000 to play a game. With probability 1in 1 million, I
give you $10 billion. Otherwise, I give you $0.

e Would you play this game? (Like in real life, right now.)

Limits of Expectation

e Let's say I charge you $1000 to play a game. With probability 1in 1 million, I
give you $10 billion. Otherwise, I give you $0.

e Would you play this game? (Like in real life, right now.)

e Answer: some of you might, but I'm guessing many of you would not. You're
just going to lose $1000.

e But expectation is good! You expect to win $9000.

Concentration bounds

J 100% 1§

i] GUARANTEE [i

e Rather than giving the average performance, bound the probability U'u%
performance.

Concentration bounds

100%

. 5
i' GUARANTEE i

» Rather than giving the average performance, bound the probability Giy =
performance. i

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

Concentration bounds

100%

. 5
i' GUARANTEE i

» Rather than giving the average performance, bound the probability Giy =
performance. i

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

e Answer: 1/2k

Concentration bounds

100%

- .
i GUARANTEE E

e Rather than giving the average performance, bound the probability Gi, =+
performance. o

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

e Answer: 1/2k

e Quicksort has expected runtime O(nlogn). What is the probability that the
running time is more than O(n logn)?

Concentration bounds

100%

i GUARANTEE E

e Rather than giving the average performance, bound the probability Gi, = -
performance. Y

e Let's say I flip a coin k times. On average, I see k/2 heads. But what is the
probability I never see a heads?

e Answer: 1/2K

e Quicksort has expected runtime O(nlogn). What is the probability that the
running time is more than O(n logn)?

e Answer: O(1/n) (this is why quicksort is not worse than merge sort even
though it can be ©(n?): you'll never see the worst case if n is at all large)

With High Probability

)‘ 100% 1§

i] GUARANTEE fi
(A

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

With High Probability

)‘ 100% {
i] GUARANTEE [i
L

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

e We've seen:

With High Probability

P 100% §

i] GUA_'R.A#TEE [i

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

e We've seen:

o Quicksort is O(n logn) with high probability

With High Probability

P 100% .

i“ GUARANTEE Ii

e
TNAN

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

e We've seen:

o Quicksort is O(n logn) with high probability

e Cuckoo hashing inserts finish without looping with high probability

With High Probability

)‘ 100% 1§

i] GUARANTEE fi
(A

e An event happens with high probability (with respect to n) if
it happens with probability 1 — O(1/n)

With High Probability

P 100% 8§

i] GUA_'R.A#TEE [i

e An event happens with high probability (with respect to n) if \,\/*\/
it happens with probability 1 — O(1/n)

e Some new results (each is O(1) in expectation):

With High Probability

P 100% .

i“ GUARANTEE Ii

e An event happens with high probability (with respect to n) if ,\/*\/
it happens with probability 1 — O(1/n)

e Some new results (each is O(1) in expectation):

e Cuckoo hashing inserts require O(log n) swaps with high probability

With High Probability

100%

o 5
i' GUARANTEE i

e An event happens with high probability (with respect to n) if \ \X,
it happens with probability 1 — O(1/n)

e Some new results (each is O(1) in expectation):

e Cuckoo hashing inserts require O(log n) swaps with high probability

e Linear probing queries require O(log n) time with high probability.

With High Probability

100%

o 5
i' GUARANTEE i

e An event happens with high probability (with respect to n) if \ \X,
it happens with probability 1 — O(1/n)

e Some new results (each is O(1) in expectation):
e Cuckoo hashing inserts require O(log n) swaps with high probability
e Linear probing queries require O(log n) time with high probability.

e What do you think chaining requires?

With High Probability

100%
<

i GUARANTEE E

e An event happens with high probability (with respect to n) if v*
it happens with probability 1 — O(1/n)

e Some new results (each is O(1) in expectation):
e Cuckoo hashing inserts require O(log n) swaps with high probability
e Linear probing queries require O(log n) time with high probability.

e What do you think chaining requires?

logn
loglogn

e Chaining queries require O() time with high probability

With High Probability

100%

i GUARANTEE E

e An event happens with high probability (with respect to n) if fi"
it happens with probability 1 — O(1/n) '

e Some new results (each is O(1) in expectation):

e Cuckoo hashing inserts require O(log n) swaps with high probability
e Linear probing queries require O(log n) time with high probability.

e What do you think chaining requires?

logn
loglogn

e Chaining queries require O() time with high probability

e With high probability is always with respect to a variable. Assume that it's with
respect to n unless stated otherwise.

WHP example

P 100% .

i‘ GUARANTEE i
i —'-'— A

B "
TN

e How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

WHP example

100%
<

i GUARANTEE E
Tt

"
A\
e How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

o If I flip k times, I see a heads with probability 1 — 1/2".

WHP example

100%

¢ 5
i GUARANTEE i
Tt

*

e How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

o If I flip k times, I see a heads with probability 1 — 1/2".

e So I need 1/2K = O(1/n). Solving, k = O(logn).

WHP example

100%

i GUARANTEE i
Tt

&

e How many coins do I need to flip before I see a heads with high probability?
(With respect to some variable n)

o If I flip k times, I see a heads with probability 1 — 1/2".
e So I need 1/2K = O(1/n). Solving, k = O(logn).

e This is (a simplified version of) the analysis leading to the O(log n) worst case
bounds on the last slide

Expectation vs Concentration (WHP)
100%

& »

i‘ GUARANTEE i
i —'-'— A

*
e We’'ll usually use “with high probability” for concentration bounds o

Expectation vs Concentration (WHP)
100%

¢ 5
i GUARANTEE i
Tt

*’
\

e We’'ll usually use “with high probability” for concentration bounds

e Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

Expectation vs Concentration (WHP)
100%

i GUARANTEE i
Tt

&

e We’'ll usually use “with high probability” for concentration bounds

e Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

o “With high probability” gives a guarantee that will almost always be met: if n is
large it becomes vanishingly unlikely that the bound will be violated.

Expectation vs Concentration (WHP)
100%

i GUARANTEE i
Tt

&

e We’'ll usually use “with high probability” for concentration bounds

e Expectation states how well the algorithm does on average. Could be much
better or worse sometimes!

o “With high probability” gives a guarantee that will almost always be met: if n is
large it becomes vanishingly unlikely that the bound will be violated.

e Largely fulfills the promise of classic worst-case algorithm analysis, but
applied to randomized algorithms

	Cuckoo Hashing Wrapup
	Filters: Goals for Today
	History and Discussion
	Bloom Filters
	Cuckoo Filter
	Improved Cuckoo Filter Performance
	Implementing Effective Hash Functions
	Cuckoo Filter Analysis
	Limits of Expectation

