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Admin

• Did everyone have a good mountain day?

• Assignment 3 out today, due next Thursday

• Cuckoo filters today; streaming Thursday

• Best plan (in my opinon)

• Finish cuckoo filter coding part of assignment on Thursday in lab

• Should be very doable if you read through the lab and starter code beforehand

• Finish rest next Thursday

• No TA hours during reading period

• Assignment 4 next week based on lecture Thursday

• Midterm on Friday after Assignment 4; review the Tuesday before



Cuckoo Hashing Wrapup



Cuckoo Hashing [Pagh, Rodler 2005]

• A third method of resolving collisions

• Queries are O(1) worst case

• Insert will still be O(1) in expectation

• Comparison to linear probing and chaining?

• Chaining: O(1) worst case inserts; O(1) expected queries. Not as good for
query-heavy workloads!

• Linear probing: more cache-efficient, but both inserts and queries are only O(1)
on average
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Cuckoo Hashing Inserts

c a x u
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h2(u) = 0

h1(c) = 4

• Let’s say we want to insert a new

item a. How can we do that?

• Easy case: if h1(a) or h2(a) is free,

can just store a immediately.

• What do we do if both are full?

• Move one of the items in the way to

its other slot!

• If there’s an item THERE, recurse
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Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One potential problem: three items x, y, and z all have the same two hashes.

Can’t maintain the invariant!

• If this occurs, our insert algorithm (so far) loops infinitely

x u
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• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• From last time: What is the probability that this exact scenario happens if we
store n items in 2n slots? Let’s do this on the board.

• There exist slots s1 and s2 such that all of x, y, and z all hash to one of these two
slots

• For a given x, y, z, s1, and s2, how often does h1(x) = h1(y) = h1(z) = s1 and
h2(x) = h2(y) = h2(z) = s2?

• (1/2n)6

• There are
(n

3

)(2n
2

)
choices of x, y, z, s1, and s2

• So this happens with probability Θ(n3n2/n6) = Θ(1/n).
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Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• This occurs with probability O(1/n)

• With more work: probability of an insert looping infinitely is O(1/n) (proof is

outside the scope of the course)

• Inserts loop very rarely if n is large (you probably will not see this happen on

Assignment 3). Usually put in a maximum number of iterations, after which the

insert fails, to prevent looping infinitely
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Cuckoo Hashing Performance

c x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Queries: O(1) worst case operations

• Query cache performance?
• Two cache misses per query. Is that good?
• Kind of! Probably better than chaining. But linear probing has only ≈one cache

miss on any query, so long as log n items fit in a cache line
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• What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

• Result: O(1) cuckoos in expectation, so inserts are O(1)
• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• True analysis is nontrivial since these events are not independent
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Cuckoo Hashing Performance

• Queries: O(1) worst case

• Insert cache performance?

• One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

• In practice, inserts are a downside for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with relatively expensive

inserts
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Filters: Goals for Today



What we want

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we’re losing and what we’re not
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Filter

• Stores a set S of size n (basically: think of it as a (lossy) compressed

dictionary)

• Answers queries q of the form: “is q ∈ S?”

• Really just a very simple dictionary that only returns whether or not a key exists
(no values)

• All elements x ∈ S and all queries must be from some universe U

• (Only need U to make sure that we can hash everything.)
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Filter Guarantees

Guarantee (No False Negatives)

A filter is always correct when it returns that q /∈ S.

Equivalently, if we query an item q ∈ S, then a filter will always correctly answer

q ∈ S.

A filter always reports that every key in your dictionary exists. But it may (falsely)

report that others exist as well



Guarantee 1 Sanity check

• Can you create a very simple data structure that has no false negatives?

• Easiest option: my data structure stores nothing. On every query q, my data

structure responds “q ∈ S.”

• Another easy option: I store the entire set S using a standard dictionary

(perhaps using a hash table). On a query q, I look it up and give the correct

answer.
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Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

We want our filter to have a false positive rate ε < 1.

The filters we will talk about today will work for any false positive rate ε, so long as

1/ε is a power of 2.1

So we can, if we want, guarantee a false positive rate of 1/2, or 1/1024—whatever is

best for your use case.

1The cuckoo filter will actually need 1 + 1/ε to be a power of 2.
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Guarantee 2 Sanity check

• Can you create a very simple data structure that has a good false positive

rate?

• I store the entire set S using a standard dictionary (perhaps using a hash

table). On a query q, I look it up and give the correct answer. This satisfies

Guarantee 2 with ε = 0.
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Filter example

Let’s say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = “fox”?

• The filter always returns yes, x ∈ S

• What happens when I query for the (non) word “fhqwhgads”?

• With probability ε, the filter returns yes, x ∈ S

• With probability 1 − ε, the filter returns no, x /∈ S
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Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.
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Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.
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History and Discussion



Bloom filter

• Invented by Burton H. Bloom in

1970

• Original publication only talked

about good practical performance;

theoretical analysis came later.
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• Invented by Fan et al. in 2014

• Provides better space usage for

small ε (i.e. when the compression

is not too lossy)

• Requires fewer hashes; has better

cache performance.
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When should you use a filter?

1st example: avoiding cache

misses

• Let’s say we have a very

large table of data

• Large enough that it doesn’t
fit in L3

• Maybe it doesn’t even fit
in RAM

• Frequently query items not

in the table
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Common filter usage

q
Lookup(q)

Queries to the entire dataset are very expensive!



Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the

table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for a spellchecker.

• Checking if key already exists before an insert (deduplication in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative
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q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.
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cache misses for keys q /∈ S.

• Greatly reduces number of remote accesses, thereby reducing time.
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Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as

misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it

misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full

dictionary! (Roughly 98% accuracy.)
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Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk,

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k, hi : U → {0, . . . ,m − 1} (that is to say, hi maps an

element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer
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Building a Bloom Filter

• Begin with A[i] = 0 for all i. (Basically, just calloc the bit array.)

• Then add the items one at a time by setting all their slots to 1:

1 for each x in S:
2 for i = 1 to k:
3 A[h_i(x)] = 1



Building a Bloom Filter
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x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.
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Invariant

• What invariant does this data structure satisfy?

Invariant

A Bloom filter storing a set S using hashes h1, . . . hk satisfies A[hi(x)] = 1 for all

x ∈ S and all i ∈ {1, . . . , k}.



Invariant

• What invariant does this data structure satisfy?

Invariant

A Bloom filter storing a set S using hashes h1, . . . hk satisfies A[hi(x)] = 1 for all

x ∈ S and all i ∈ {1, . . . , k}.



Querying a Bloom filter

On a query q, we check all the hash slots to see if any stores 0:

1 for i = 1 to k:
2 if A[h_i(q)] == 0:
3 return false //q is not in S
4
5 // we have A[h_i(q)] = 1 for all h_i
6 return true //q is in S



Query example
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h1(q) h2(q)

An example query to an element not in the set; k = 3.
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In pairs: is it possible to insert a new item into a Bloom
filter?

Is it possible to delete an item?



Discussion

• Can we insert into a Bloom filter?

• Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

• Can we delete?

• No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee
1.
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Bloom filter analysis

• Assume our hashes hi are perfectly uniform random: any x ∈ U is mapped to

any hash slot s ∈ {0, . . . ,m − 1} with probability 1/m; independently of any

other hash.

• Let’s strategize: what about the Bloom filter can we use to prove that

Guarantee 1 and Guarantee 2 hold?



Guarantee 1

Guarantee (No False Negatives)

If we query an item q ∈ S, then a filter will always answer q ∈ S.

• By the Bloom filter Invariant, if q ∈ S, then A[hi(q)] = 1 for all i ∈ {1, . . . k}.

• This means that the query algorithm always returns “q ∈ S.”
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Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.
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Cuckoo Filter



Assignment 3

• In short: you’ll implement a cuckoo filter to speed up a sequence of dictionary

queries

• You’re looking for “bilingual palindromes”: strings whose reverse is a word in

another language

• Most words are not bilingual palindromes, so a filter can significantly speed up

queries
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Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1, h2, . . . , hk (k is a constant)

• We’ll eventually only use one of these hash functions (h1) in our implementation!

• a fingerprint hash function f that takes an item from the universe and outputs

a number from 1 to 1/ε (we’ll call this number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and outputs a number

from 0 to m − 1, and

• a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits.
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Some initial parameters

• k = 2 hash functions (for now)

• m = 2n slots

• These parameters are easy to

analyze, but space inefficient. We’ll

fix it later.

• Also assume that 1/ε+ 1 is a power

of 2, and m is a power of 2.
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Initializing a Cuckoo Filter

• Make sure all slots of T are empty

• Today: we’ll set all slots to 0. A slot in T is nonempty if and only if it stores a

number larger than 0.

Invariant

For any x ∈ S, either slot h1(x) or h2(x) stores the fingerprint f(x).

Question: with this invariant, how can we query to avoid false negatives?
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Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.
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Cuckoo Filter Insert First Attempt
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x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.
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Is our invariant maintained?



Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).
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Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

• Calculate h(ϕ)

• Its other slot is s ∧ h(ϕ). (This is XOR in C)

• If that other slot is empty we can store ϕ in it (woo)! Otherwise, take the

fingerprint stored there and cuckoo it to its other slot.
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Cuckoo Filter Invariant

Using partial-key cuckoo hashing with k = 2:

Invariant

For any x ∈ S, either slot h1(x) or h2(x) = h1(x) ∧ h(f(x)) stores the fingerprint f(x).

For higher k:

Invariant

For every x ∈ S, there exists an i ∈ {1, . . . , k} such that f(x) is stored in T[hi(x)].



Querying a Cuckoo Filter

To query an element q:

1 for i = 1 to k:
2 if T[h_i(q)] = f(q):
3 return true // q is in S
4 //did not find the fingerprint in any slot
5 return false // q is not in S



Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q f(q) = 102

h(102) = 0102

h1(q)
h2(q) = 1 ∧ h(102) = 3

Querying a cuckoo filter with ε = 1/3 and k = 2.
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Discussion

• Can a cuckoo filter handle inserts?

• Yes! But as we insert more and more elements the number of cuckoos we expect
will get larger and larger (and higher probability of a cycle of cuckoos)

• How about deletes?

• Oftentimes yes—if you are careful! (Need to make sure we don’t delete another
element’s fingerprint.)
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Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.
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1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
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x

h2(x)
h1(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.
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Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).



Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).



Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).



Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).



Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).



Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).



Implementing Effective Hash
Functions



Hashes we need

• h1 which maps an arbitrary element (a string in Homework 3) to a slot in the

hash table

• f which maps an arbitrary element (a string in Homework 3) to a number from

1 to 255 (we’ll be doing 8-bit fingerprints)

• h which maps a fingerprint from 1 to 255 to a slot in the hash table



Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for i ∈ {1, . . . , 255}, just use hashFingerprint[i − 1]
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Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting

random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second

32 bits as f

• Use mod to get them down to size
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Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;



Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;



Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;



Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;



Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;



Cuckoo Filter Analysis



Union Bound

Theorem

Let X and Y be random events. Then

Pr(X or Y) ≤ Pr(X) + Pr(Y).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Pr(Xk).

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

• Sometimes called “Boole’s inequality”
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• Let’s say I have 10 students in a course, and I randomly assign each student

an ID between 1 and 100 (these IDs do not need to be unique).

• Can you upper bound the probability that some student has ID 1?
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Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.
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Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.

This is messy! And it would be even worse if the

IDs were not independent!

The union bound lets us avoid this work.



Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1 is at most the

sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.
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Analysis of Cuckoo Filters

Some assumptions going in:

• all hash functions hi are uniformly random: any x ∈ U is mapped to any hash

slot s ∈ {0, . . . ,m − 1} with probability 1/m.

• Same for the fingerprint hash f: any x ∈ U is mapped to a given fingerprint

fx ∈ {1, . . . , 1/ε} with probability ε.

• We will analyze without partial-key cuckoo hashing (we’ll assume independent

h1 and h2)
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First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it

returns that q /∈ S.

Equivalently, if we query an item

q ∈ S, then a filter will always

correctly answer q ∈ S.

Invariant
For every x ∈ S, there exists an

i ∈ {1, . . . , k} such that f(x) is stored

in T[hi(x)].

• We can see that the invariant means that there are no false negatives.
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Second Guarantee: False Positive Rate

Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

• A query q /∈ S is a false positive if, for some hi , T[hi(q)] = f(q).

• Let’s examine each hash h1 and h2 individually.
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Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is ε.

• Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is ε/2.
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Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.

• Are these events independent?

• No! If h1 does not have a collision, we’re slightly more likely to have an

element collide under h2
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Second: Guarantee: Putting it Together

• q is a false positive if either T[h1(q)] contains a fingerprint f(x1) such that

f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at most

ε/2 + ε/2 = ε.
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Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I

give you $10 billion. Otherwise, I give you $0.

• Would you play this game? (Like in real life, right now.)

• Answer: some of you might, but I’m guessing many of you would not. You’re

just going to lose $1000.

• But expectation is good! You expect to win $9000.
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Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)
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With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• We’ve seen:

• Quicksort is O(n log n) with high probability

• Cuckoo hashing inserts finish without looping with high probability
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With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O( log n
log log n ) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.
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WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1 − 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide
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Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms
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