
Lecture 9: Bloom Filters and
Cuckoo Filters

Sam McCauley

October 7, 2025

Williams College

Admin

• Did everyone have a good mountain day?

• Assignment 3 out today, due next Thursday

• Cuckoo filters today; streaming Thursday

• Best plan (in my opinon)

• Finish cuckoo filter coding part of assignment on Thursday in lab

• Should be very doable if you read through the lab and starter code beforehand

• Finish rest next Thursday

• No TA hours during reading period

• Assignment 4 next week based on lecture Thursday

• Midterm on Friday after Assignment 4; review the Tuesday before

Cuckoo Hashing Wrapup

Cuckoo Hashing [Pagh, Rodler 2005]

• A third method of resolving collisions

• Queries are O(1) worst case

• Insert will still be O(1) in expectation

• Comparison to linear probing and chaining?

• Chaining: O(1) worst case inserts; O(1) expected queries. Not as good for
query-heavy workloads!

• Linear probing: more cache-efficient, but both inserts and queries are only O(1)
on average

Cuckoo Hashing Queries

c x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Query: Just check both slots

Cuckoo Hashing Queries

c x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Query: Just check both slots

Cuckoo Hashing Queries

c x u

0 1 2 3 4 5

q

h1(q) = 1

h2(q) = 4

• Query: Just check both slots

Cuckoo Hashing Queries

c a x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Query: Just check both slots

Cuckoo Hashing Inserts

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• Let’s say we want to insert a new

item a. How can we do that?

• Easy case: if h1(a) or h2(a) is free,

can just store a immediately.

• What do we do if both are full?

• Move one of the items in the way to

its other slot!

• If there’s an item THERE, recurse

Cuckoo Hashing Inserts

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• Let’s say we want to insert a new

item a. How can we do that?

• Easy case: if h1(a) or h2(a) is free,

can just store a immediately.

• What do we do if both are full?

• Move one of the items in the way to

its other slot!

• If there’s an item THERE, recurse

Cuckoo Hashing Inserts

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• Let’s say we want to insert a new

item a. How can we do that?

• Easy case: if h1(a) or h2(a) is free,

can just store a immediately.

• What do we do if both are full?

• Move one of the items in the way to

its other slot!

• If there’s an item THERE, recurse

Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One potential problem: three items x, y, and z all have the same two hashes.

Can’t maintain the invariant!

• If this occurs, our insert algorithm (so far) loops infinitely

x u

0 1 2 3 4 5

ba c

Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• From last time: What is the probability that this exact scenario happens if we
store n items in 2n slots? Let’s do this on the board.

• There exist slots s1 and s2 such that all of x, y, and z all hash to one of these two
slots

• For a given x, y, z, s1, and s2, how often does h1(x) = h1(y) = h1(z) = s1 and
h2(x) = h2(y) = h2(z) = s2?

• (1/2n)6

• There are
(n

3

)(2n
2

)
choices of x, y, z, s1, and s2

• So this happens with probability Θ(n3n2/n6) = Θ(1/n).

Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• From last time: What is the probability that this exact scenario happens if we
store n items in 2n slots? Let’s do this on the board.

• There exist slots s1 and s2 such that all of x, y, and z all hash to one of these two
slots

• For a given x, y, z, s1, and s2, how often does h1(x) = h1(y) = h1(z) = s1 and
h2(x) = h2(y) = h2(z) = s2?

• (1/2n)6

• There are
(n

3

)(2n
2

)
choices of x, y, z, s1, and s2

• So this happens with probability Θ(n3n2/n6) = Θ(1/n).

Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• This occurs with probability O(1/n)

• With more work: probability of an insert looping infinitely is O(1/n) (proof is

outside the scope of the course)

• Inserts loop very rarely if n is large (you probably will not see this happen on

Assignment 3). Usually put in a maximum number of iterations, after which the

insert fails, to prevent looping infinitely

Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• This occurs with probability O(1/n)

• With more work: probability of an insert looping infinitely is O(1/n) (proof is

outside the scope of the course)

• Inserts loop very rarely if n is large (you probably will not see this happen on

Assignment 3). Usually put in a maximum number of iterations, after which the

insert fails, to prevent looping infinitely

Cuckoo Hashing Performance

c x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Queries: O(1) worst case operations

• Query cache performance?
• Two cache misses per query. Is that good?
• Kind of! Probably better than chaining. But linear probing has only ≈one cache

miss on any query, so long as log n items fit in a cache line

Cuckoo Hashing Performance

c x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Queries: O(1) worst case operations

• Query cache performance?

• Two cache misses per query. Is that good?
• Kind of! Probably better than chaining. But linear probing has only ≈one cache

miss on any query, so long as log n items fit in a cache line

Cuckoo Hashing Performance

c x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Queries: O(1) worst case operations

• Query cache performance?
• Two cache misses per query. Is that good?

• Kind of! Probably better than chaining. But linear probing has only ≈one cache
miss on any query, so long as log n items fit in a cache line

Cuckoo Hashing Performance

c a x u

0 1 2 3 4 5

q

h1(q) = 1
h2(q) = 4

• Queries: O(1) worst case operations

• Query cache performance?
• Two cache misses per query. Is that good?
• Kind of! Probably better than chaining. But linear probing has only ≈one cache

miss on any query, so long as log n items fit in a cache line

Cuckoo Hashing Performance

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

• Result: O(1) cuckoos in expectation, so inserts are O(1)
• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• True analysis is nontrivial since these events are not independent

Cuckoo Hashing Performance

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

• Result: O(1) cuckoos in expectation, so inserts are O(1)
• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• True analysis is nontrivial since these events are not independent

Cuckoo Hashing Performance

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

• Result: O(1) cuckoos in expectation, so inserts are O(1)

• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• True analysis is nontrivial since these events are not independent

Cuckoo Hashing Performance

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

• Result: O(1) cuckoos in expectation, so inserts are O(1)
• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• True analysis is nontrivial since these events are not independent

Cuckoo Hashing Performance

c a x u

0 1 2 3 4 5

e

h1(e) h2(e)

h2(u) = 0

h1(c) = 4

• What is the Insert performance including all cuckoos (computationally)? How
many cuckoos do we do?

• Result: O(1) cuckoos in expectation, so inserts are O(1)
• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• True analysis is nontrivial since these events are not independent

Cuckoo Hashing Performance

• Queries: O(1) worst case

• Insert cache performance?

• One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

• In practice, inserts are a downside for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with relatively expensive

inserts

Cuckoo Hashing Performance

• Queries: O(1) worst case

• Insert cache performance?

• One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

• In practice, inserts are a downside for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with relatively expensive

inserts

Cuckoo Hashing Performance

• Queries: O(1) worst case

• Insert cache performance?

• One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

• In practice, inserts are a downside for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with relatively expensive

inserts

Cuckoo Hashing Performance

• Queries: O(1) worst case

• Insert cache performance?

• One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

• In practice, inserts are a downside for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with relatively expensive

inserts

Cuckoo Hashing Performance

• Queries: O(1) worst case

• Insert cache performance?

• One cache miss per “cuckoo”, so O(1) insert overall—OK but not great

• In practice, inserts are a downside for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with relatively expensive

inserts

Filters: Goals for Today

What we want

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we’re losing and what we’re not

What we want

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we’re losing and what we’re not

What we want

• Worst-case compression

• Lossy compression with algorithmic guarantees

• That is to say: we know what we’re losing and what we’re not

Filter

• Stores a set S of size n (basically: think of it as a (lossy) compressed

dictionary)

• Answers queries q of the form: “is q ∈ S?”

• Really just a very simple dictionary that only returns whether or not a key exists
(no values)

• All elements x ∈ S and all queries must be from some universe U

• (Only need U to make sure that we can hash everything.)

Filter

• Stores a set S of size n (basically: think of it as a (lossy) compressed

dictionary)

• Answers queries q of the form: “is q ∈ S?”

• Really just a very simple dictionary that only returns whether or not a key exists
(no values)

• All elements x ∈ S and all queries must be from some universe U

• (Only need U to make sure that we can hash everything.)

Filter

• Stores a set S of size n (basically: think of it as a (lossy) compressed

dictionary)

• Answers queries q of the form: “is q ∈ S?”

• Really just a very simple dictionary that only returns whether or not a key exists
(no values)

• All elements x ∈ S and all queries must be from some universe U

• (Only need U to make sure that we can hash everything.)

Filter

• Stores a set S of size n (basically: think of it as a (lossy) compressed

dictionary)

• Answers queries q of the form: “is q ∈ S?”

• Really just a very simple dictionary that only returns whether or not a key exists
(no values)

• All elements x ∈ S and all queries must be from some universe U

• (Only need U to make sure that we can hash everything.)

Filter Guarantees

Guarantee (No False Negatives)

A filter is always correct when it returns that q /∈ S.

Equivalently, if we query an item q ∈ S, then a filter will always correctly answer

q ∈ S.

A filter always reports that every key in your dictionary exists. But it may (falsely)

report that others exist as well

Guarantee 1 Sanity check

• Can you create a very simple data structure that has no false negatives?

• Easiest option: my data structure stores nothing. On every query q, my data

structure responds “q ∈ S.”

• Another easy option: I store the entire set S using a standard dictionary

(perhaps using a hash table). On a query q, I look it up and give the correct

answer.

Guarantee 1 Sanity check

• Can you create a very simple data structure that has no false negatives?

• Easiest option: my data structure stores nothing. On every query q, my data

structure responds “q ∈ S.”

• Another easy option: I store the entire set S using a standard dictionary

(perhaps using a hash table). On a query q, I look it up and give the correct

answer.

Guarantee 1 Sanity check

• Can you create a very simple data structure that has no false negatives?

• Easiest option: my data structure stores nothing. On every query q, my data

structure responds “q ∈ S.”

• Another easy option: I store the entire set S using a standard dictionary

(perhaps using a hash table). On a query q, I look it up and give the correct

answer.

Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

We want our filter to have a false positive rate ε < 1.

The filters we will talk about today will work for any false positive rate ε, so long as

1/ε is a power of 2.1

So we can, if we want, guarantee a false positive rate of 1/2, or 1/1024—whatever is

best for your use case.

1The cuckoo filter will actually need 1 + 1/ε to be a power of 2.

Filter Guarantees

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

We want our filter to have a false positive rate ε < 1.

The filters we will talk about today will work for any false positive rate ε, so long as

1/ε is a power of 2.1

So we can, if we want, guarantee a false positive rate of 1/2, or 1/1024—whatever is

best for your use case.

1The cuckoo filter will actually need 1 + 1/ε to be a power of 2.

Guarantee 2 Sanity check

• Can you create a very simple data structure that has a good false positive

rate?

• I store the entire set S using a standard dictionary (perhaps using a hash

table). On a query q, I look it up and give the correct answer. This satisfies

Guarantee 2 with ε = 0.

Guarantee 2 Sanity check

• Can you create a very simple data structure that has a good false positive

rate?

• I store the entire set S using a standard dictionary (perhaps using a hash

table). On a query q, I look it up and give the correct answer. This satisfies

Guarantee 2 with ε = 0.

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = “fox”?

• The filter always returns yes, x ∈ S

• What happens when I query for the (non) word “fhqwhgads”?

• With probability ε, the filter returns yes, x ∈ S

• With probability 1 − ε, the filter returns no, x /∈ S

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = “fox”?

• The filter always returns yes, x ∈ S

• What happens when I query for the (non) word “fhqwhgads”?

• With probability ε, the filter returns yes, x ∈ S

• With probability 1 − ε, the filter returns no, x /∈ S

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = “fox”?

• The filter always returns yes, x ∈ S

• What happens when I query for the (non) word “fhqwhgads”?

• With probability ε, the filter returns yes, x ∈ S

• With probability 1 − ε, the filter returns no, x /∈ S

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = “fox”?

• The filter always returns yes, x ∈ S

• What happens when I query for the (non) word “fhqwhgads”?

• With probability ε, the filter returns yes, x ∈ S

• With probability 1 − ε, the filter returns no, x /∈ S

Filter example

Let’s say we store all English words in the filter (S consists of all English words).

• What happens when I query for the word x = “fox”?

• The filter always returns yes, x ∈ S

• What happens when I query for the (non) word “fhqwhgads”?

• With probability ε, the filter returns yes, x ∈ S

• With probability 1 − ε, the filter returns no, x /∈ S

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Tradeoff

• Obviously, smaller ε is better-it means we make fewer mistakes.

• So what’s the tradeoff?

• We tradeoff space versus accuracy using ε.

• Smaller ε means the compression is not as lossy

• We make fewer mistakes, but we need more space

• Larger ε means more aggressive compression

• Space is very small, but filter is very inaccurate!

• A filter generally requires O(n log 1/ε) bits of space.

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.

Space bounds

We talk about two filters today:

• A Bloom filter requires 1.44n log2(1/ε) bits of space.

• The cuckoo filter uses 1.05n log2(1 + 1/ε) + 3.15n bits of space.

How can we interpret this?

• Plugging in numbers: if we have a cuckoo filter with ε = 1/63, the filter takes

less than 1 byte of space per element being stored.

• Notice that this space does not depend on the size of the original elements.

We can store very long strings and still require only one byte per string stored.

History and Discussion

Bloom filter

• Invented by Burton H. Bloom in

1970

• Original publication only talked

about good practical performance;

theoretical analysis came later.

Bloom filter

• Invented by Burton H. Bloom in

1970

• Original publication only talked

about good practical performance;

theoretical analysis came later.

Cuckoo filter

• Invented by Fan et al. in 2014

• Provides better space usage for

small ε (i.e. when the compression

is not too lossy)

• Requires fewer hashes; has better

cache performance.

Cuckoo filter

• Invented by Fan et al. in 2014

• Provides better space usage for

small ε (i.e. when the compression

is not too lossy)

• Requires fewer hashes; has better

cache performance.

Cuckoo filter

• Invented by Fan et al. in 2014

• Provides better space usage for

small ε (i.e. when the compression

is not too lossy)

• Requires fewer hashes; has better

cache performance.

When should you use a filter?

1st example: avoiding cache

misses

• Let’s say we have a very

large table of data

• Large enough that it doesn’t
fit in L3

• Maybe it doesn’t even fit
in RAM

• Frequently query items not

in the table

When should you use a filter?

1st example: avoiding cache

misses

• Let’s say we have a very

large table of data

• Large enough that it doesn’t
fit in L3

• Maybe it doesn’t even fit
in RAM

• Frequently query items not

in the table

When should you use a filter?

1st example: avoiding cache

misses

• Let’s say we have a very

large table of data

• Large enough that it doesn’t
fit in L3

• Maybe it doesn’t even fit
in RAM

• Frequently query items not

in the table

When should you use a filter?

1st example: avoiding cache

misses

• Let’s say we have a very

large table of data

• Large enough that it doesn’t
fit in L3

• Maybe it doesn’t even fit
in RAM

• Frequently query items not

in the table

Common filter usage

q
Lookup(q)

Queries to the entire dataset are very expensive!

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the

table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for a spellchecker.

• Checking if key already exists before an insert (deduplication in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative

queries.

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the

table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for a spellchecker.

• Checking if key already exists before an insert (deduplication in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative

queries.

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the

table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for a spellchecker.

• Checking if key already exists before an insert (deduplication in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative

queries.

Queries are often “unnecessary”

Many workloads involve mostly “negative” queries: queries to keys not stored in the

table. (query q /∈ S)

• Classic example: dictionary of unusually-hyphenated words for a spellchecker.

• Checking if key already exists before an insert (deduplication in general)

• Check for malicious URLs

• Table with many empty entries

Classic filter usage: succinct data structure that will allow us to “filter out” negative

queries.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?

Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?

Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.

If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?

Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?

Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.

If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?

No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?

No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

0 1 0 0 1 0 0 1

q

Is q ∈ S?Yes, q ∈ S.
Is q ∈ S?

Is q ∈ S?

No, q /∈ S.

Filters are so small that they can fit in local memory.

Filters can be used to “filter out” negative membership queries, improving

performance.

Fast in-memory query.If filter reports q ∈ S, access the table.

If q /∈ S (false positive), still do an unnecessary access.

Always correct! Don’t need to access table.

Common filter usage

• With O(n log 1/ε) local memory (perhaps fitting in L3 cache), can filter out 1− ε

cache misses for keys q /∈ S.

• Greatly reduces number of remote accesses, thereby reducing time.

Common filter usage

• With O(n log 1/ε) local memory (perhaps fitting in L3 cache), can filter out 1− ε

cache misses for keys q /∈ S.

• Greatly reduces number of remote accesses, thereby reducing time.

When should you use a filter?

2nd example: Approximately storing a set

• Before, we stored the actual set S. (It was expensive to access, but we stored

it.)

• But what if we don’t want to?

• Example: approximate spell checker

When should you use a filter?

2nd example: Approximately storing a set

• Before, we stored the actual set S. (It was expensive to access, but we stored

it.)

• But what if we don’t want to?

• Example: approximate spell checker

When should you use a filter?

2nd example: Approximately storing a set

• Before, we stored the actual set S. (It was expensive to access, but we stored

it.)

• But what if we don’t want to?

• Example: approximate spell checker

Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as

misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it

misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full

dictionary! (Roughly 98% accuracy.)

Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as

misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it

misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full

dictionary! (Roughly 98% accuracy.)

Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as

misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it

misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full

dictionary! (Roughly 98% accuracy.)

Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as

misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it

misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full

dictionary! (Roughly 98% accuracy.)

Approximate spell checker

• Want to build a spell checker; don’t have room to store dictionary

• Store the words in a filter. What do our guarantees mean?

• Guarantee 1: if we query a correctly-spelled word, it is never marked as

misspelled

• Guarantee 2: if we query a misspelled word, we only miss it (don’t mark it

misspelled) with probability ε

• Using only a byte or so per item, can do almost as well as storing a full

dictionary! (Roughly 98% accuracy.)

Bloom Filters

Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk,

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k, hi : U → {0, . . . ,m − 1} (that is to say, hi maps an

element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer

Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk,

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k, hi : U → {0, . . . ,m − 1} (that is to say, hi maps an

element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer

Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk,

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k, hi : U → {0, . . . ,m − 1} (that is to say, hi maps an

element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer

Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk,

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k, hi : U → {0, . . . ,m − 1} (that is to say, hi maps an

element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer

Bloom Filter

A Bloom filter consists of:

• k = log2 1/ε hash functions, which I will denote using h1, h2, . . . , hk,

• Bit array A of m = nk log2 e ≈ 1.44n log2
1
ε bits.

• Since we’re doing compression, we measure space in bits, and track constants

• For each i = 1, . . . , k, hi : U → {0, . . . ,m − 1} (that is to say, hi maps an

element from the universe of possible elements U to a slot in the hash table).

• Assume 1/ε is a power of 2; round m up to the nearest integer

Building a Bloom Filter

• Begin with A[i] = 0 for all i. (Basically, just calloc the bit array.)

• Then add the items one at a time by setting all their slots to 1:

1 for each x in S:
2 for i = 1 to k:
3 A[h_i(x)] = 1

Building a Bloom Filter

0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

0 0 1 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

1 0 1 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)

h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

1 0 1 0 0 0 1 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

1 0 1 0 0 0 1 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

1 0 1 0 1 0 1 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

1 0 1 0 1 0 1 0 0
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)

h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Building a Bloom Filter

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

Inserting two elements x and y into a Bloom filter with ε = 1/8. We have three hash
functions, and (rounding up) the array is of length m = 9 bits.

Invariant

• What invariant does this data structure satisfy?

Invariant

A Bloom filter storing a set S using hashes h1, . . . hk satisfies A[hi(x)] = 1 for all

x ∈ S and all i ∈ {1, . . . , k}.

Invariant

• What invariant does this data structure satisfy?

Invariant

A Bloom filter storing a set S using hashes h1, . . . hk satisfies A[hi(x)] = 1 for all

x ∈ S and all i ∈ {1, . . . , k}.

Querying a Bloom filter

On a query q, we check all the hash slots to see if any stores 0:

1 for i = 1 to k:
2 if A[h_i(q)] == 0:
3 return false //q is not in S
4
5 // we have A[h_i(q)] = 1 for all h_i
6 return true //q is in S

Query example

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q) h2(q)

An example query to an element not in the set; k = 3.

Query example

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)

An example query to an element not in the set; k = 3.

Query example

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q) h2(q)

An example query to an element not in the set; k = 3.

Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)h3(q)

An example false positive query.

Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)h3(q)

An example false positive query.

Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)

h3(q)

An example false positive query.

Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)h3(q)

An example false positive query.

Query example 2

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

q

h1(q)

h2(q)h3(q)

1 0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 7 8

x

h1(x)

h2(x)
h3(x)

y

h1(y)

h2(y)
h3(y)

In pairs: is it possible to insert a new item into a Bloom
filter?

Is it possible to delete an item?

Discussion

• Can we insert into a Bloom filter?

• Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

• Can we delete?

• No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee
1.

Discussion

• Can we insert into a Bloom filter?

• Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

• Can we delete?

• No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee
1.

Discussion

• Can we insert into a Bloom filter?

• Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

• Can we delete?

• No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee
1.

Discussion

• Can we insert into a Bloom filter?

• Yes, but performance degrades as it fills up. We are OK so long as no more than
n items are inserted.

• Can we delete?

• No. If we flip a bit from 1 to 0, it may cause a false negative, violating Guarantee
1.

Bloom filter analysis

• Assume our hashes hi are perfectly uniform random: any x ∈ U is mapped to

any hash slot s ∈ {0, . . . ,m − 1} with probability 1/m; independently of any

other hash.

• Let’s strategize: what about the Bloom filter can we use to prove that

Guarantee 1 and Guarantee 2 hold?

Guarantee 1

Guarantee (No False Negatives)

If we query an item q ∈ S, then a filter will always answer q ∈ S.

• By the Bloom filter Invariant, if q ∈ S, then A[hi(q)] = 1 for all i ∈ {1, . . . k}.

• This means that the query algorithm always returns “q ∈ S.”

Guarantee 1

Guarantee (No False Negatives)

If we query an item q ∈ S, then a filter will always answer q ∈ S.

• By the Bloom filter Invariant, if q ∈ S, then A[hi(q)] = 1 for all i ∈ {1, . . . k}.

• This means that the query algorithm always returns “q ∈ S.”

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Guarantee 2 (False positive rate)

Guarantee (Bounded False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

High-level argument:

• Assume: each entry of A is 1 with probability 1/2

• Only get a false positive if every bit is a 1

• Are these events independent?

• No! But it seems like the independence isn’t too big of a deal...let’s assume
they’re independent for now.

• Occurs with probability (1/2)k = (1/2)log2(1/ε)

• (1/2)log2(1/ε) = ε.

Cuckoo Filter

Assignment 3

• In short: you’ll implement a cuckoo filter to speed up a sequence of dictionary

queries

• You’re looking for “bilingual palindromes”: strings whose reverse is a word in

another language

• Most words are not bilingual palindromes, so a filter can significantly speed up

queries

Assignment 3

• In short: you’ll implement a cuckoo filter to speed up a sequence of dictionary

queries

• You’re looking for “bilingual palindromes”: strings whose reverse is a word in

another language

• Most words are not bilingual palindromes, so a filter can significantly speed up

queries

Assignment 3

• In short: you’ll implement a cuckoo filter to speed up a sequence of dictionary

queries

• You’re looking for “bilingual palindromes”: strings whose reverse is a word in

another language

• Most words are not bilingual palindromes, so a filter can significantly speed up

queries

Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1, h2, . . . , hk (k is a constant)

• We’ll eventually only use one of these hash functions (h1) in our implementation!

• a fingerprint hash function f that takes an item from the universe and outputs

a number from 1 to 1/ε (we’ll call this number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and outputs a number

from 0 to m − 1, and

• a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits.

Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1, h2, . . . , hk (k is a constant)

• We’ll eventually only use one of these hash functions (h1) in our implementation!

• a fingerprint hash function f that takes an item from the universe and outputs

a number from 1 to 1/ε (we’ll call this number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and outputs a number

from 0 to m − 1, and

• a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits.

Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1, h2, . . . , hk (k is a constant)

• We’ll eventually only use one of these hash functions (h1) in our implementation!

• a fingerprint hash function f that takes an item from the universe and outputs

a number from 1 to 1/ε (we’ll call this number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and outputs a number

from 0 to m − 1, and

• a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits.

Cuckoo Filter

A cuckoo filter consists of:

• k hash functions denoted by h1, h2, . . . , hk (k is a constant)

• We’ll eventually only use one of these hash functions (h1) in our implementation!

• a fingerprint hash function f that takes an item from the universe and outputs

a number from 1 to 1/ε (we’ll call this number the fingerprint of the item)

• a cuckooing hash function h that takes in a fingerprint and outputs a number

from 0 to m − 1, and

• a hash table T of m slots, where each slot has room for log2(1 + 1/ε) bits.

Some initial parameters

• k = 2 hash functions (for now)

• m = 2n slots

• These parameters are easy to

analyze, but space inefficient. We’ll

fix it later.

• Also assume that 1/ε+ 1 is a power

of 2, and m is a power of 2.

Some initial parameters

• k = 2 hash functions (for now)

• m = 2n slots

• These parameters are easy to

analyze, but space inefficient. We’ll

fix it later.

• Also assume that 1/ε+ 1 is a power

of 2, and m is a power of 2.

Some initial parameters

• k = 2 hash functions (for now)

• m = 2n slots

• These parameters are easy to

analyze, but space inefficient. We’ll

fix it later.

• Also assume that 1/ε+ 1 is a power

of 2, and m is a power of 2.

Some initial parameters

• k = 2 hash functions (for now)

• m = 2n slots

• These parameters are easy to

analyze, but space inefficient. We’ll

fix it later.

• Also assume that 1/ε+ 1 is a power

of 2, and m is a power of 2.

Initializing a Cuckoo Filter

• Make sure all slots of T are empty

• Today: we’ll set all slots to 0. A slot in T is nonempty if and only if it stores a

number larger than 0.

Invariant

For any x ∈ S, either slot h1(x) or h2(x) stores the fingerprint f(x).

Question: with this invariant, how can we query to avoid false negatives?

Initializing a Cuckoo Filter

• Make sure all slots of T are empty

• Today: we’ll set all slots to 0. A slot in T is nonempty if and only if it stores a

number larger than 0.

Invariant

For any x ∈ S, either slot h1(x) or h2(x) stores the fingerprint f(x).

Question: with this invariant, how can we query to avoid false negatives?

Initializing a Cuckoo Filter

• Make sure all slots of T are empty

• Today: we’ll set all slots to 0. A slot in T is nonempty if and only if it stores a

number larger than 0.

Invariant

For any x ∈ S, either slot h1(x) or h2(x) stores the fingerprint f(x).

Question: with this invariant, how can we query to avoid false negatives?

Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.

Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.

Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.

Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.

Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.

Inserting into a Cuckoo Filter

• If there is an hi such that T[hi(x)] is nonempty, then store f(x) in T[hi(x)].

• Otherwise, we cuckoo:

• Choose some i ∈ {1, . . . , k}

• Let’s say that x1 is the element stored in T[hi(x)].

• Then we store f(x) in T[hi(x)] and “cuckoo” x1 to another slot

• If we cuckoo more than log n elements, we rebuild the filter.

Cuckoo Filter Insert First Attempt

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 11 10 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)

h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 00 10 10 01
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 11 10 10 01
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert First Attempt

00 01 00 00 11 10 10 01
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2)

Element’s other slot

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Is our invariant maintained?

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).

Implementing Insertions

There’s a problem with what I said!

• We don’t have access to the element that hashed to that slot. So how can we

calculate its other hash?

• If k = 2, we can use partial-key cuckoo hashing.

• Only use one hash h1 for slots. But then, have a second hash h that maps a

fingerprint to a number from 1 to m.

• Set h2(x) = h1(x) ∧ h(f(x)). (XOR)

• Note that then h2(x) ∧ h(f(x)) = h1(x)∧h(f(x))∧h(f(x)) = h1(x).

Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

• Calculate h(ϕ)

• Its other slot is s ∧ h(ϕ). (This is XOR in C)

• If that other slot is empty we can store ϕ in it (woo)! Otherwise, take the

fingerprint stored there and cuckoo it to its other slot.

Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

• Calculate h(ϕ)

• Its other slot is s ∧ h(ϕ). (This is XOR in C)

• If that other slot is empty we can store ϕ in it (woo)! Otherwise, take the

fingerprint stored there and cuckoo it to its other slot.

Cuckooing

So to cuckoo a fingerprint ϕ stored in a slot s to its other location:

• Calculate h(ϕ)

• Its other slot is s ∧ h(ϕ). (This is XOR in C)

• If that other slot is empty we can store ϕ in it (woo)! Otherwise, take the

fingerprint stored there and cuckoo it to its other slot.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

00 01 00 00 11 00 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example With Partial-Key Cuckoo Hashing

00 01 00 00 11 10 10 00
0 1 2 3 4 5 6 7

x

h1(x)

f(x) = 102

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2) = h1(x2)

∧ h(f(x2))

h(012) = 0112

4 ∧ h(012) = 7

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)

h2(x2) = h1(x2)
∧ h(f(x2))

h(012) = 0112

4 ∧ h(012) = 7

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2) = h1(x2)

∧ h(f(x2))

h(012) = 0112

4 ∧ h(012) = 7

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

00 01 00 00 01 10 10 00
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2) = h1(x2)

∧ h(f(x2))

h(012) = 0112

4 ∧ h(012) = 7

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

00 01 00 00 00 10 10 01
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2) = h1(x2)

∧ h(f(x2))

h(012) = 0112

4 ∧ h(012) = 7

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Insert Example 2

00 01 00 00 11 10 10 01
0 1 2 3 4 5 6 7

x2

h1(x2)
h2(x2) = h1(x2)

∧ h(f(x2))

h(012) = 0112

4 ∧ h(012) = 7

f(x2) = 112

A cuckoo filter with ε = 1/3 and k = 2.

Cuckoo Filter Invariant

Using partial-key cuckoo hashing with k = 2:

Invariant

For any x ∈ S, either slot h1(x) or h2(x) = h1(x) ∧ h(f(x)) stores the fingerprint f(x).

For higher k:

Invariant

For every x ∈ S, there exists an i ∈ {1, . . . , k} such that f(x) is stored in T[hi(x)].

Querying a Cuckoo Filter

To query an element q:

1 for i = 1 to k:
2 if T[h_i(q)] = f(q):
3 return true // q is in S
4 //did not find the fingerprint in any slot
5 return false // q is not in S

Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q f(q) = 102

h(102) = 0102

h1(q)
h2(q) = 1 ∧ h(102) = 3

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q f(q) = 102

h(102) = 0102

h1(q)
h2(q) = 1 ∧ h(102) = 3

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q f(q) = 102

h(102) = 0102

h1(q)

h2(q) = 1 ∧ h(102) = 3

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q f(q) = 102

h(102) = 0102

h1(q)
h2(q) = 1 ∧ h(102) = 3

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q2 f(q2) = 112

h1(q2) h2(q2) = 1 ∧ h(112) = 7

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q2 f(q2) = 112

h1(q2) h2(q2) = 1 ∧ h(112) = 7

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q2 f(q2) = 112

h1(q2)

h2(q2) = 1 ∧ h(112) = 7

Querying a cuckoo filter with ε = 1/3 and k = 2.

Querying a Cuckoo Filter: Example 2

00 01 00 00 01 00 10 11
0 1 2 3 4 5 6 7

q2 f(q2) = 112

h1(q2) h2(q2) = 1 ∧ h(112) = 7

Querying a cuckoo filter with ε = 1/3 and k = 2.

Discussion

• Can a cuckoo filter handle inserts?

• Yes! But as we insert more and more elements the number of cuckoos we expect
will get larger and larger (and higher probability of a cycle of cuckoos)

• How about deletes?

• Oftentimes yes—if you are careful! (Need to make sure we don’t delete another
element’s fingerprint.)

Discussion

• Can a cuckoo filter handle inserts?

• Yes! But as we insert more and more elements the number of cuckoos we expect
will get larger and larger (and higher probability of a cycle of cuckoos)

• How about deletes?

• Oftentimes yes—if you are careful! (Need to make sure we don’t delete another
element’s fingerprint.)

Discussion

• Can a cuckoo filter handle inserts?

• Yes! But as we insert more and more elements the number of cuckoos we expect
will get larger and larger (and higher probability of a cycle of cuckoos)

• How about deletes?

• Oftentimes yes—if you are careful! (Need to make sure we don’t delete another
element’s fingerprint.)

Improved Cuckoo Filter
Performance

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Improving the Cuckoo Filter

• Currently, have m = 2n slots, so the space is 2n log2(1/ε).

• Here is one way to improve that:

• Store room for four fingerprints in each hash slot, and make the fingerprints

hash to {1, . . . ,8/ε}. Assume that 8/ε+ 1 is a multiple of 2.

• To query: check all four fingerprints in both slots

• To insert: just need to find one empty space in one of the two slots; if all 8 are

full then cuckoo

• Make sure you change which slot you cuckoo from! If you always cuckoo from

slot 1 you are much more likely to get a cycle!

• I used a global variable to indicate what slot to cuckoo from; incrementing it

each time.

• Then can set m = 1.05n/4, giving total space usage

1.05n log2(8/ε+ 1) ≈ 1.05n log2(1/ε) + 3.15n.

Example

1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h2(x)
h1(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Example 2

1000 1010 0000 0000 0101 0000 0100 0000
0000 0000 0000 0000 1001 0000 0110 0000
0000 0000 0000 0000 0010 0000 0101 0000
0000 0000 0000 0000 1001 0000 1111 0000

0 1 2 3 4 5 6 7

x

h1(x)
h2(x)

A cuckoo filter with fingerprints of length 4, k = 2, and 4 slots per bin.

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).

Comparing the Two Filters

Bloom filters:

• Easy to implement

• Fairly efficient for large ε

Cuckoo filters:

• Much more space efficient

• Only require 2 hash functions (may

improve practical performance)

• Good cache efficiency: only need to

access the hash table 2 times,

rather than log2(1/ε).

Implementing Effective Hash
Functions

Hashes we need

• h1 which maps an arbitrary element (a string in Homework 3) to a slot in the

hash table

• f which maps an arbitrary element (a string in Homework 3) to a number from

1 to 255 (we’ll be doing 8-bit fingerprints)

• h which maps a fingerprint from 1 to 255 to a slot in the hash table

Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for i ∈ {1, . . . , 255}, just use hashFingerprint[i − 1]

Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for i ∈ {1, . . . , 255}, just use hashFingerprint[i − 1]

Implementing h

• h is easy because it only needs 255 values

• I give you an array of random values in the starter code

• To calculate h(i), for i ∈ {1, . . . , 255}, just use hashFingerprint[i − 1]

Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting

random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second

32 bits as f

• Use mod to get them down to size

Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting

random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second

32 bits as f

• Use mod to get them down to size

Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting

random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second

32 bits as f

• Use mod to get them down to size

Implementing h1 and f

• murmurhash: a popular, fast, hash function that does a good job of “acting

random”

• Will be given to you as part of your starter code

• murmurhash outputs 128 bits. We’ll use the first 32 bits as h1, and the second

32 bits as f

• Use mod to get them down to size

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Calling Murmurhash

uint32_t hash[4] = {0,0,0,0};
MurmurHash3_x64_128(word, length, seed, hash);

• word is the string you would like to hash

• length is the length of word (murmurhash does not check for

null-termination!)

• seed is the hash function seed (pick a large random number; keep it

consistent)

• hash is the 128 bits of output

uint32_t position = hash[0] % numSlots;
uint32_t fingerprint = 1 + hash[1] % fingerprintMask;

Cuckoo Filter Analysis

Union Bound

Theorem

Let X and Y be random events. Then

Pr(X or Y) ≤ Pr(X) + Pr(Y).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Pr(Xk).

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

• Sometimes called “Boole’s inequality”

Union Bound

Theorem

Let X and Y be random events. Then

Pr(X or Y) ≤ Pr(X) + Pr(Y).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Pr(Xk).

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

• Sometimes called “Boole’s inequality”

Union Bound

Theorem

Let X and Y be random events. Then

Pr(X or Y) ≤ Pr(X) + Pr(Y).

More generally, if X1,X2, . . . ,Xk are any random events, then

Pr(X1 or X2 or . . . or Xk) ≤
k∑

i=1

Pr(Xk).

• Simple but useful tool in randomized algorithms

• Always works, even for events that are not independent

• Sometimes called “Boole’s inequality”

Union Bound Example

• Let’s say I have 10 students in a course, and I randomly assign each student

an ID between 1 and 100 (these IDs do not need to be unique).

• Can you upper bound the probability that some student has ID 1?

Union Bound Example

• Let’s say I have 10 students in a course, and I randomly assign each student

an ID between 1 and 100 (these IDs do not need to be unique).

• Can you upper bound the probability that some student has ID 1?

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.

Exact Analysis of Student ID Problem

• The probability that at least one student has ID 1 is

1 − Pr(no student has ID 1).

• The probability that a single student has an ID other than 1 is 99/100.

• Thus, the probability that all 10 students have an ID other than 1 is (99/100)10.

• Thus, the probability that at least one student has ID 1 is

1 − (99/100)10 ≈ 9.56%.

This is messy! And it would be even worse if the

IDs were not independent!

The union bound lets us avoid this work.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1 is at most the

sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1 is at most the

sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.

Union Bound Analysis of Student Problem

• The probability that a given student has ID 1 is 1/100.

• From Union bound: The probability that any student has ID 1 is at most the

sum, over all 10 students, of 1/100.

• This gives us an upper bound of 10/100 = 10%.

Analysis of Cuckoo Filters

Some assumptions going in:

• all hash functions hi are uniformly random: any x ∈ U is mapped to any hash

slot s ∈ {0, . . . ,m − 1} with probability 1/m.

• Same for the fingerprint hash f: any x ∈ U is mapped to a given fingerprint

fx ∈ {1, . . . , 1/ε} with probability ε.

• We will analyze without partial-key cuckoo hashing (we’ll assume independent

h1 and h2)

Analysis of Cuckoo Filters

Some assumptions going in:

• all hash functions hi are uniformly random: any x ∈ U is mapped to any hash

slot s ∈ {0, . . . ,m − 1} with probability 1/m.

• Same for the fingerprint hash f: any x ∈ U is mapped to a given fingerprint

fx ∈ {1, . . . , 1/ε} with probability ε.

• We will analyze without partial-key cuckoo hashing (we’ll assume independent

h1 and h2)

Analysis of Cuckoo Filters

Some assumptions going in:

• all hash functions hi are uniformly random: any x ∈ U is mapped to any hash

slot s ∈ {0, . . . ,m − 1} with probability 1/m.

• Same for the fingerprint hash f: any x ∈ U is mapped to a given fingerprint

fx ∈ {1, . . . , 1/ε} with probability ε.

• We will analyze without partial-key cuckoo hashing (we’ll assume independent

h1 and h2)

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it

returns that q /∈ S.

Equivalently, if we query an item

q ∈ S, then a filter will always

correctly answer q ∈ S.

Invariant
For every x ∈ S, there exists an

i ∈ {1, . . . , k} such that f(x) is stored

in T[hi(x)].

• We can see that the invariant means that there are no false negatives.

First Guarantee: No False Negatives

Guarantee (No False Negatives)

A filter is always correct when it

returns that q /∈ S.

Equivalently, if we query an item

q ∈ S, then a filter will always

correctly answer q ∈ S.

Invariant
For every x ∈ S, there exists an

i ∈ {1, . . . , k} such that f(x) is stored

in T[hi(x)].

• We can see that the invariant means that there are no false negatives.

Second Guarantee: False Positive Rate

Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

• A query q /∈ S is a false positive if, for some hi , T[hi(q)] = f(q).

• Let’s examine each hash h1 and h2 individually.

Second Guarantee: False Positive Rate

Guarantee (False Positive Rate)

A filter has a false positive rate ε if, for any query q /∈ S, the filter (incorrectly)

returns “q ∈ S” with probability ε.

• A query q /∈ S is a false positive if, for some hi , T[hi(q)] = f(q).

• Let’s examine each hash h1 and h2 individually.

Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is ε.

• Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is ε/2.

Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is ε.

• Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is ε/2.

Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is ε.

• Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is ε/2.

Second Guarantee: False Positive Rate

• Let’s start with h1. What is the probability T[h1(q)] contains a fingerprint?

• 1/2, because we are storing n elements in 2n slots.

• If T[h1(q)] contains a fingerprint, the probability that f(x) = f(q) is ε.

• Therefore, the probability that T[h1(q)] contains a fingerprint f(x) = f(q) is ε/2.

Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.

• Are these events independent?

• No! If h1 does not have a collision, we’re slightly more likely to have an

element collide under h2

Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.

• Are these events independent?

• No! If h1 does not have a collision, we’re slightly more likely to have an

element collide under h2

Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.

• Are these events independent?

• No! If h1 does not have a collision, we’re slightly more likely to have an

element collide under h2

Second Guarantee: False Positive Rate

• What about h2?

• Same exact analysis: probability that T[h2(q)] contains a fingerprint

f(x) = f(q) is ε/2.

• Are these events independent?

• No! If h1 does not have a collision, we’re slightly more likely to have an

element collide under h2

Second: Guarantee: Putting it Together

• q is a false positive if either T[h1(q)] contains a fingerprint f(x1) such that

f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at most

ε/2 + ε/2 = ε.

Second: Guarantee: Putting it Together

• q is a false positive if either T[h1(q)] contains a fingerprint f(x1) such that

f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at most

ε/2 + ε/2 = ε.

Second: Guarantee: Putting it Together

• q is a false positive if either T[h1(q)] contains a fingerprint f(x1) such that

f(x1) = f(q), or T[h2(q)] contains a fingerprint f(x2) such that f(x2) = f(q)

• Each happens with probability at most ε/2

• By union bound, one or the other happens with probability at most

ε/2 + ε/2 = ε.

Limits of Expectation

Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I

give you $10 billion. Otherwise, I give you $0.

• Would you play this game? (Like in real life, right now.)

• Answer: some of you might, but I’m guessing many of you would not. You’re

just going to lose $1000.

• But expectation is good! You expect to win $9000.

Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I

give you $10 billion. Otherwise, I give you $0.

• Would you play this game? (Like in real life, right now.)

• Answer: some of you might, but I’m guessing many of you would not. You’re

just going to lose $1000.

• But expectation is good! You expect to win $9000.

Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I

give you $10 billion. Otherwise, I give you $0.

• Would you play this game? (Like in real life, right now.)

• Answer: some of you might, but I’m guessing many of you would not. You’re

just going to lose $1000.

• But expectation is good! You expect to win $9000.

Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)

Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)

Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)

Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)

Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• We’ve seen:

• Quicksort is O(n log n) with high probability

• Cuckoo hashing inserts finish without looping with high probability

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• We’ve seen:

• Quicksort is O(n log n) with high probability

• Cuckoo hashing inserts finish without looping with high probability

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• We’ve seen:

• Quicksort is O(n log n) with high probability

• Cuckoo hashing inserts finish without looping with high probability

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• We’ve seen:

• Quicksort is O(n log n) with high probability

• Cuckoo hashing inserts finish without looping with high probability

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1 − O(1/n)

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• What do you think chaining requires?

• Chaining queries require O(log n
log log n) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.

WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1 − 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide

WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1 − 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide

WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1 − 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide

WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1 − 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide

Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms

Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms

Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms

Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms

	Cuckoo Hashing Wrapup
	Filters: Goals for Today
	History and Discussion
	Bloom Filters
	Cuckoo Filter
	Improved Cuckoo Filter Performance
	Implementing Effective Hash Functions
	Cuckoo Filter Analysis
	Limits of Expectation

