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Probability



Probability Takeaways

What I want you to know by the end of this section of the course:

1. Definition of probability/basic calculations

2. Determine if two events are independent

3. Calculate expectation

4. Linearity of expectation

5. Difference between “concentration bounds” vs expected performance



Definition of Probability

• Defined over a set of possible outcomes (often called the sample space)

• An event is a subset of the outcomes

•

Pr [Event E] =
# outcomes in the event

Total # of outcomes

• Formal definition probability generally applies weights to the events (in which

case the definition of probability is the weight of outcomes in the event,

divided by total weight of all events). We will usually have equal-weight events.
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Probability Calculation Examples

• Let’s say I roll a 20-sided die. What is the probability that an even number

comes up?

• Answer: 10/20 = 1/2.

• Let’s say I flip a coin 10 times. What is the probability of getting exactly 5

heads? (Let’s do this on the board)

•
(10

5

)
/210 Which is 10!

5!5!210 ≈ .246

• (In a couple lectures we’ll see tools to estimate probabilities without lots of

large numbers all over the place. For now, use wolfram alpha or whatever)
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Probability Calculation: Final Example

• What is the probability of getting a straight flush in poker?

• Simple version: you are dealt 5 cards. You want to know the probability that

they all have the same suit, and they are increasing numbers, like 3-4-5-6-7.

(Ace is high only)

• 52 cards: 4 suits; 13 cards of each suit

• Let’s do the anlaysis out on the board

• Reminder:

Pr [Event E] =
# outcomes in the event

Total # of outcomes

• Number of possible hands is
(52

5

)
• Number of straights is 4 ∗ 9 (4 suits; straight starts with 2-9)

• Probability is 36/
(52

5

)
≈ 0.0000138517



Conditional Probability

• Sometimes (especially in algorithms) we want to calculate the probability of an
event, when we already have some partial information about the outcome

• Who has seen conditional probability before?

• Specifically: want to calculate the probability of event E1, already knowing that

the outcome is in E2. Denoted Pr[E1|E2].

• Example: let’s say I’m playing cards with a 52-card deck. I have already drawn

three cards; all three were clubs. What is the probability that the fourth card is

a club?

• Pr[draw 4 clubs | first three cards were a club]

• How many outcomes are there for the fourth card? How many of them are a

club?

• 49 outcomes. 10 of them are clubs. Probability: 10/49.
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Conditional Probability Second Example

• Let’s say that I have one child who is a boy (in a very simplified model where

each child is a “boy” or “girl” according to an independent coin flip). What is

the probability that when I have a second child, it winds up being a boy?

• What is your answer intuitively?

• Outcomes for my children: BB BG GB GG

• Outcomes consistent with "the second one is a boy": BB GB

• Probability 1/2
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Conditional Probability Third Example

Conditional probability can be a bit unintuitive at times! Break it down to be sure

you’re getting the right answer. (This is why we go over the formal definitions)

• Let’s say that I have two children. One of them is a boy. What is the probability

that both of them are boys?

• Outcomes for my children: BB BG GB GG

• Outcomes consistent with "one of them is a boy": BB BG GB

• Probability that both of them are boys: 1/3

• Rephrasing the question: Let’s say I have two children. They are not both girls.

What is the probability that they are both boys?

• Yes, this kind of a wording trick. But similar issues can arise when analyzing

algorithms.
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Independence

• Idea: two events are independent if one does not have any impact on the

other

• Example: let’s say I flip a (fair) coin twice. Let E1 be the event that the first flip

is heads, and E2 be the event that the second flip is heads. E1 and E2 are

independent.

• Formal definition: E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and
Pr[E2 | E1] = Pr[E2].

• Knowing the outcome of one does not affect the probability of the other!

• I’ll generally ask you if things are independent intuitively rather than asking for

a proof. But, let’s look at a couple classic examples of independence and how

this definition works with them.
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Proving Independence

Example: let’s say I flip a (fair) coin twice. Let E1 be the event that the first flip is

heads, and E2 be the event that the second flip is heads. E1 and E2 are independent.

Definition

E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and Pr[E2 | E1] = Pr[E2].

All possible outcomes: HH HT TH TT
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Proving Independence

Example: let’s say I flip a (fair) coin twice. Let E1 be the event that the first flip is

heads, and E2 be the event that the second flip is heads. E1 and E2 are independent.

Definition

E1 and E2 are independent if Pr[E1 | E2] = Pr[E1] and Pr[E2 | E1] = Pr[E2].

All possible outcomes: HH HT TH TT

Pr[E2 | E1] = 1/2

Again: we’ll normally be looking at this intuitively.



Independence: Examples

• Let’s say I have a bag of balls, half of which are black, and half of which are
white. I take a ball out of the bag and look at what color it is. Then I take
another ball out of the bag and look at what color it is.

• Event 1: The first ball is white.
• Event 2: The second ball is black
• Are these events independent?
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white. I take a ball out of the bag and look at what color it is. Then I take
another ball out of the bag and look at what color it is.

• Event 1: The first ball is white.
• Event 2: The second ball is black
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• No! If the first ball is white, there will be more black balls then white balls

remaining in the bag for the next draw.



Hash Functions
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h(x)

• Let’s do an example using hash functions

• Recall: A hash function is used to index into a hash table

• Idea: if the hash function is random, our items will (usually) be distributed

evenly throughout the hash table
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Hash Functions in this Class
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• In this class, for analysis, we will assume that all hash functions are uniform

random

• The hash function maps any item x to a random slot from 0 to m− 1; each with

probability 1/m
• h(x) is independent of h(y) for any y 6= x

• In fact, we’ll assume that h(x) is independent of the hash of any set of other
items—in short, h(x) is like rolling an m-sided die



Hash Functions in this Class

0 1 2 3 4 5 6 7

x

h(x)

• In this class, for analysis, we will assume that all hash functions are uniform

random

• The hash function maps any item x to a random slot from 0 to m− 1; each with

probability 1/m

• h(x) is independent of h(y) for any y 6= x
• In fact, we’ll assume that h(x) is independent of the hash of any set of other

items—in short, h(x) is like rolling an m-sided die



Hash Functions in this Class

0 1 2 3 4 5 6 7

x

h(x)

• In this class, for analysis, we will assume that all hash functions are uniform

random

• The hash function maps any item x to a random slot from 0 to m− 1; each with

probability 1/m
• h(x) is independent of h(y) for any y 6= x

• In fact, we’ll assume that h(x) is independent of the hash of any set of other
items—in short, h(x) is like rolling an m-sided die



Hash Functions in this Class

0 1 2 3 4 5 6 7

x

h(x)

• In this class, for analysis, we will assume that all hash functions are uniform

random

• The hash function maps any item x to a random slot from 0 to m− 1; each with

probability 1/m
• h(x) is independent of h(y) for any y 6= x

• In fact, we’ll assume that h(x) is independent of the hash of any set of other
items—in short, h(x) is like rolling an m-sided die



Hash Functions in this Class

0 1 2 3 4 5 6 7

x

h(x)

• In this class, for analysis, we will assume that all hash functions are uniform

random

• The hash function maps any item x to a random slot from 0 to m− 1; each with

probability 1/m
• h(x) is independent of h(y) for any y 6= x

• In fact, we’ll assume that h(x) is independent of the hash of any set of other
items—in short, h(x) is like rolling an m-sided die



Hash Functions in this Class

x
0 1 2 3 4 5 6 7

x

h(x)

• In this class, for analysis, we will assume that all hash functions are uniform

random

• The hash function maps any item x to a random slot from 0 to m− 1; each with

probability 1/m
• h(x) is independent of h(y) for any y 6= x

• In fact, we’ll assume that h(x) is independent of the hash of any set of other
items—in short, h(x) is like rolling an m-sided die



Probability example for hash tables

• Let’s say I use a (uniform random) hash function h to store a set of elements

in a hash table

• Are the following two events independent?

• Some element x hashes to bucket 1
• Some other element y hashes to bucket 1

• Yes! We assumed that the hashes of distinct elements are independent. Each

event happens with probability 1/m, independently
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Independence: Examples

• Let’s say I use a random hash function h to store a set of n elements in a hash

table

• Are the following two events independent?

• The first bucket of the hash table contains no elements
• The second bucket of the hash table contains no elements

• No! Since the first bucket contains no elements, the remaining elements are

slightly more likely to hash to the second bucket

• For intuition: let’s say there are only two slots in the hash table. Then these are

not independent at all—in fact, if the first occurs, the second cannot occur
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not independent at all—in fact, if the first occurs, the second cannot occur
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• If A and B are independent, then Pr[A and B] = Pr(A) · Pr(B).

• What is the probability of flipping 10 heads in a row when flipping a fair coin?

• All 10 are independent, so 1/210.
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Why independence is useful

• Let’s say you’re in a class of n students. Every day the professor asks a student

to explain the previous night’s reading (the student is chosen by rolling an

n-sided die). What is the probability that you won’t be chosen after all k

lectures in the course?

• Probability (not being chosen on one day) is (1− 1/n)

• Probability (not being chosen after k days) is (1− 1/n)k

• OK, that’s a formula for the probability, but it doesn’t tell me much. Is this

large or small? How does it change?



Why independence is useful

• Let’s say you’re in a class of n students. Every day the professor asks a student

to explain the previous night’s reading (the student is chosen by rolling an

n-sided die). What is the probability that you won’t be chosen after all k

lectures in the course?

• Probability (not being chosen on one day) is (1− 1/n)

• Probability (not being chosen after k days) is (1− 1/n)k

• OK, that’s a formula for the probability, but it doesn’t tell me much. Is this

large or small? How does it change?



Why independence is useful

• Let’s say you’re in a class of n students. Every day the professor asks a student

to explain the previous night’s reading (the student is chosen by rolling an

n-sided die). What is the probability that you won’t be chosen after all k

lectures in the course?

• Probability (not being chosen on one day) is (1− 1/n)

• Probability (not being chosen after k days) is (1− 1/n)k

• OK, that’s a formula for the probability, but it doesn’t tell me much. Is this

large or small? How does it change?



Why independence is useful

• Let’s say you’re in a class of n students. Every day the professor asks a student

to explain the previous night’s reading (the student is chosen by rolling an

n-sided die). What is the probability that you won’t be chosen after all k

lectures in the course?

• Probability (not being chosen on one day) is (1− 1/n)

• Probability (not being chosen after k days) is (1− 1/n)k

• OK, that’s a formula for the probability, but it doesn’t tell me much. Is this

large or small? How does it change?



Useful formulas for probability (e = 2.71 . . .)

Two useful approximations for simplifying exponents (presented as inequalities,

but really quite tight even for moderate n):

Lemma

(1 + 1/n)n ≤ e (1− 1/n)n ≤ 1/e

Example: (1.1)10 = 2.593 . . .

With probability we often use choose (a.k.a. binomial) notation, but it’s similarly

inscrutible. These inequalities can help approximate it:

Lemma (
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Why independence is useful (simplifying from before)

• Let’s say you’re in a class of n students. Every day the professor asks a student

to explain the previous night’s reading (the student is chosen by rolling an

n-sided die). What is the probability that you won’t be chosen after all k

lectures in the course?

• Probability (not being chosen on one day) is (1− 1/n)

• Probability (not being chosen after k days) is (1− 1/n)k

• Can simplify (assuming n is large):

(1− 1/n)k = ((1− 1/n)n)k/n ≈ ek/n.



Where are we

• Why we we doing all of this probability stuff again?

• We want to talk about hash table performance!

• Goal: we said last time that a hash table query could be Θ(n). But usually it

won’t be

• How can we talk about “usually” in a formal sense?

• (So: one more probability definition, then we can talk about algorithmic

performance)
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Random Variable and Expectation



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• A variable whose values depend on the outcome of a random process

• We’re using mostly for the sake of notation

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• What can we say about S?

• S is at least 0 and at most 4

• What is the probability that S is 0?

• 13/52 · 13/51 · 13/50 · 13/49 ≈ .0043

• What is the probability that S is 4?

• 13/52 · 12/51 · 11/50 · 10/49 ≈ .00264

• S is a random variable. Like normal variables, it is used to represent a value.

Here, the value is the outcome of a random process.



Random Variable

• Let’s say I draw four cards from a deck of cards. Let S be a random variable

indicating the number of clubs I draw.

• One more comment about S. Since each card is a club with probability (about)

1/4, and we draw 4 cards, it seems like S should generally be around 1. Can we

formalize this intuition?



Expectation

• When we make random decisions, we often care about the average outcome

• Example: let’s say I flip a fair coin until I get a heads. How long will it take me

on average?

• 2 flips

• Another example: quicksort is O(n2) in the worst case, but if you pick pivots

randomly, it is O(n log n) in expectation
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Definition of Expectation

• Let’s say a random variable X takes values {1, . . . k}

• Then the expectation of X is

E[X] =
k∑
i=1

i · Pr[X = i].

• It is a weighted average of the outcomes: the outcome is i, and it is weighted

by the probability that i occurs.
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Expectation example

Let’s say I roll a 20-sided die, and I give you money equal to the number that

shows up on top. I charge $10 to play this game. Should you play it?

Split into pairs and try to calculate the expected outcome.



Expectation example

Let’s say I roll a 20-sided die, and I give you money equal to the number that

shows up on top. I charge $10 to play this game. Should you play it?

Let’s look at what you win on average

• Random variable X to represent how much you win

• E[X] =
∑20

i=1 i/20

• E[X] = 20·21
2·20 = 10.5

• So you’ll win $.50 on average; you should probably play the game
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Linearity of Expectation

• Consider a random variable that can be represented as the sum of other

random variables (we’ll see an example in a moment). Linearity of expectation

means that if I sum the expectations of the parts, I get the expectation of the

whole

Theorem (Linearity of Expectation)

For any random variable X = X1 + X2 + . . . + Xn,

E[X] = E[X1] + E[X2] + . . . + E[Xn]

True even if the Xi are not independent!!!



Using Linearity of Expectation

• Let’s say I flip a coin 100 times. How many heads will I see on average?

• Let’s figure this out on the board using linearity of expectation

• X = number of heads I see in 100 flips.

•

Xi =

1 if the ith flip is heads

0 otherwise

• So then X = X1 + X2 + . . .X100

• We can see that E[Xi] = 1/2.

• E[X] = 50 by linearity of expectation. This would have been very difficult to

calculate directly using the definition!
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Linearity of Expectation

• If we can break a variable into the sum of different parts—even if the parts are

not independent—we can calculate the expectation

• Makes analysis of expected values massively easier

• We will use a lot over the next few days!

• Downside: expectation only discusses average (we’ll come back to this)
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Linearity of Expectation

• If we can break a variable into the sum of different parts—even if the parts are

not independent—we can calculate the expectation

• Makes analysis of expected values massively easier

• We will use a lot over the next few days!

• Downside: expectation only discusses average (we’ll come back to this)



Classic Hash Tables



Collisions

• (We discussed last class)

• Several items might hash to the
same location. How can we resolve
this?

• Chaining
• Linear Probing



Chaining

0 1 2 3 4 5 6 7

x

h(x)

• Each entry in our array A is the head of a new data structure

• Often implemented as a singly-linked list (let’s draw this on the board)

• A has size cn; can insert at most n items (double if we ever go over the size)

• Insert: add item to linked list; Query: find item in linked list



Chaining

0 1 2 3 4 5 6 7

x

h(x)

• Each entry in our array A is the head of a new data structure

• Often implemented as a singly-linked list (let’s draw this on the board)

• A has size cn; can insert at most n items (double if we ever go over the size)

• Insert: add item to linked list; Query: find item in linked list



Chaining

0 1 2 3 4 5 6 7

x

h(x)

• Each entry in our array A is the head of a new data structure

• Often implemented as a singly-linked list (let’s draw this on the board)

• A has size cn; can insert at most n items (double if we ever go over the size)

• Insert: add item to linked list; Query: find item in linked list



Chaining

0 1 2 3 4 5 6 7

x

x

h(x)

• Each entry in our array A is the head of a new data structure

• Often implemented as a singly-linked list (let’s draw this on the board)

• A has size cn; can insert at most n items (double if we ever go over the size)

• Insert: add item to linked list; Query: find item in linked list



Chaining

• Each entry in our array A is the head of a new data structure

• Often implemented as a singly-linked list (let’s draw this on the board)

• Assume A has size cn; can insert at most n items (double if we ever go over

the size)

• Insert: add item to linked list

• Query: find item in linked list
• Advantages?
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Linearity of Expectation Example 2: Chaining

• Chaining running time: in O(1) time we compute the hash; then we need to

compare the query to each item in the chain

• What’s the expected number of non-query elements in a given chain?

• In pairs: can you use expectation to calculate this number?

• X j = number of non-query items in chain j

• X j
i = 1 if the ith item hashes to slot j

• E[X j
i ] = 1/cn

• E[X j] =
∑n

i=1 E[X j
i ] = 1/c

• So the expected length of the chain is O(1 + 1/c) = O(1)

• Chaining has O(1) expected query time!
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• Somewhat space-efficient

• Insert is O(1 + 1
1−1/c ) = O(1) and query is O(1 + 1

(1−1/c) ) = O(1) in expectation
(Classic result of Donald Knuth; nontrivial)
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• Performance is terrible if c is close to 1—that is to say, if A is nearly full

• This is probably the most common choice in practice: it’s simple and
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• Queries are O(1) worst case

• Insert will still be O(1) in expectation
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• Chaining: O(1) worst case inserts; O(1) expected queries. Not as good for
query-heavy workloads!

• Linear probing: more cache-efficient, but both inserts and queries are only O(1)
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• Let’s say we want to insert a new

item a. How can we do that?

• Easy case: if h1(a) or h2(a) is free,

can just store a immediately.

• What do we do if both are full?
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Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One potential problem: three items x, y, and z all have the same two hashes.

Can’t maintain the invariant!

• If this occurs, our insert algorithm (so far) loops infinitely
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Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• In pairs: What is the probability that this exact scenario happens if we store n
items in 2n slots?

• There exist slots s1 and s2 such that all of x, y, and z all hash to one of these two
slots

• For a given x, y, z, s1, and s2, how often does h1(x) = h1(y) = h1(z) = s1 and
h2(x) = h2(y) = h2(z) = s2?

• (1/2n)6

• There are
(n

3

)(2n
2

)
choices of x, y, z, s1, and s2

• So this happens with probability Θ(n3n2/n6) = Θ(1/n).
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3

)(2n
2

)
choices of x, y, z, s1, and s2

• So this happens with probability Θ(n3n2/n6) = Θ(1/n).



Does this always work?

• Recall our invariant: every item x is stored at h1(x) or h2(x)

• Is there a simple example where this is impossible?

• One option: three items x, y, and z all have the same two hashes

• This occurs with probability O(1/n)

• With more work: probability of an insert looping infinitely is O(1/n) (proof is

outside the scope of the course)

• Inserts loop very rarely if n is large (you probably will not see this happen on

Assignment 3). Usually put in a maximum number of iterations, after which the

insert fails, to prevent looping infinitely
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Cuckoo Hashing Performance

• Queries: O(1) worst case

• Cache performance?

• Two cache misses per query. Is that good?

• Kind of! Probably better than chaining. But linear probing has only ≈one cache
miss on any query, so long as log n items fit in a cache line

• What is the Insert performance?

• Result: Inserts are O(1) in expectation

• Idea: half the slots are empty, so each time we go to a new slot, we should have a
≈ 1/2 probability of being done

• (Analysis is nontrivial since these are not truly independent, and we need to
carefully avoid cases with an infinite loop)
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Cuckoo Hashing Performance

• Queries: O(1) worst case

• Cache performance?

• Insert cache performance?

• One cache miss per “cuckoo”–OK but not great

• In practice, inserts are really pretty bad for cuckoo hashing due to poor constants

• Idea: cuckoo hashing does great on queries (though with potentially worse

cache efficiency than linear probing), but pays for it with expensive inserts
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Limits of Expectation

• Let’s say I charge you $1000 to play a game. With probability 1 in 1 million, I

give you $10 billion. Otherwise, I give you $0.

• Would you play this game? (Like in real life, right now.)

• Answer: some of you might, but I’m guessing many of you would not. You’re

just going to lose $1000.

• But expectation is good! You expect to win $9000.
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Concentration bounds

• Rather than giving the average performance, bound the probability of bad

performance.

• Let’s say I flip a coin k times. On average, I see k/2 heads. But what is the

probability I never see a heads?

• Answer: 1/2k

• Quicksort has expected runtime O(n log n). What is the probability that the

running time is more than O(n log n)?

• Answer: O(1/n) (this is why quicksort is not worse than merge sort even

though it can be Θ(n2): you’ll never see the worst case if n is at all large)
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With High Probability

• An event happens with high probability (with respect to n) if

it happens with probability 1− O(1/n)

• We’ve seen:

• Quicksort is O(n log n) with high probability

• Cuckoo hashing inserts finish without looping with high probability

• Some new results (each is O(1) in expectation):

• Cuckoo hashing inserts require O(log n) swaps with high probability

• Linear probing queries require O(log n) time with high probability.

• Chaining queries require O( log n
log log n ) time with high probability

• With high probability is always with respect to a variable. Assume that it’s with

respect to n unless stated otherwise.
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WHP example

• How many coins do I need to flip before I see a heads with high probability?

(With respect to some variable n)

• If I flip k times, I see a heads with probability 1− 1/2k.

• So I need 1/2k = O(1/n). Solving, k = Θ(log n).

• This is (a simplified version of) the analysis leading to the O(log n) worst case

bounds on the last slide
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Expectation vs Concentration (WHP)

• We’ll usually use “with high probability” for concentration bounds

• Expectation states how well the algorithm does on average. Could be much

better or worse sometimes!

• “With high probability” gives a guarantee that will almost always be met: if n is

large it becomes vanishingly unlikely that the bound will be violated.

• Largely fulfills the promise of classic worst-case algorithm analysis, but

applied to randomized algorithms
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